Combining fixed point theorems with the method of lower and upper solutions, we get the existence of solutions to the following nonlinear differential inclusion: \[ (D(x(t))\Phi(x'(t)))' \in G(t,x(t),x'(t)) \ \ \mbox{a.e. } t\in I=[0,T], \] satisfying various nonlinear boundary conditions, covering Dirichlet, Neumann and periodic problems. Here $\Phi$ is a non-surjective homeomorphism and $D$ is a generic positive continuous function.

Boundary value problems for highly nonlinear inclusions governed by non-surjective Phi-Laplacians / Ferracuti, Laura; Marcelli, Cristina; Papalini, Francesca. - In: SET-VALUED AND VARIATIONAL ANALYSIS. - ISSN 1877-0533. - 19 (1):(2011), pp. 1-21.

Boundary value problems for highly nonlinear inclusions governed by non-surjective Phi-Laplacians

FERRACUTI, Laura;MARCELLI, Cristina;PAPALINI, Francesca
2011-01-01

Abstract

Combining fixed point theorems with the method of lower and upper solutions, we get the existence of solutions to the following nonlinear differential inclusion: \[ (D(x(t))\Phi(x'(t)))' \in G(t,x(t),x'(t)) \ \ \mbox{a.e. } t\in I=[0,T], \] satisfying various nonlinear boundary conditions, covering Dirichlet, Neumann and periodic problems. Here $\Phi$ is a non-surjective homeomorphism and $D$ is a generic positive continuous function.
2011
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/53253
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact