Sulfur is one of the critical elements in living matter, as it participates in several structural, metabolic and catalytic activities. Photosynthesis is an important process that entails the use of sulfur during both the light and carbon reactions. Nearly half of global photosynthetic carbon fixation is carried out by phytoplankton in the aquatic environment. Aquatic environments are very different from one another with respect to sulfur content: while in the oceans sulfate concentration is constantly high, freshwaters are characterized by daily and seasonal variations and by a wide range of sulfur concentration. The strategies that algal cells adopt for energy and resource allocation often reflect these differences. In the oceans, the amount and chemical form of sulfur has changed substantially during the course of the Earth’s history; it is possible that sulfur availability played a role in the evolution of marine phytoplankton communities and it may continue to have appreciable effects on global biogeochemistry and ecology. Phytoplankton is also the main biogenic source of sulfur; sulfur can be released into the atmosphere by algal cells as dimethylsulfide, with possibly important repercussions on global climate. These and related matters are discussed in this review.
Sulfur and primary production in aquatic environments: an ecological perspective / Norici, Alessandra; Hell, R.; Giordano, Mario. - In: PHOTOSYNTHESIS RESEARCH. - ISSN 0166-8595. - 86:(2005), pp. 409-417.
Sulfur and primary production in aquatic environments: an ecological perspective
NORICI, ALESSANDRA;GIORDANO, Mario
2005-01-01
Abstract
Sulfur is one of the critical elements in living matter, as it participates in several structural, metabolic and catalytic activities. Photosynthesis is an important process that entails the use of sulfur during both the light and carbon reactions. Nearly half of global photosynthetic carbon fixation is carried out by phytoplankton in the aquatic environment. Aquatic environments are very different from one another with respect to sulfur content: while in the oceans sulfate concentration is constantly high, freshwaters are characterized by daily and seasonal variations and by a wide range of sulfur concentration. The strategies that algal cells adopt for energy and resource allocation often reflect these differences. In the oceans, the amount and chemical form of sulfur has changed substantially during the course of the Earth’s history; it is possible that sulfur availability played a role in the evolution of marine phytoplankton communities and it may continue to have appreciable effects on global biogeochemistry and ecology. Phytoplankton is also the main biogenic source of sulfur; sulfur can be released into the atmosphere by algal cells as dimethylsulfide, with possibly important repercussions on global climate. These and related matters are discussed in this review.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.