Karhunen-Loève Transform, being able to represent stochastic processes under appropriate conditions, is a powerful signal processing tool. But the high computational cost incurred in the modeling of long signals has limited its use in the recognition of speech segmented at the word level. In this paper we present a novel algorithm that significantly reduces the computational cost when the number of signals to be treated is small in comparison to their samples.

A novel KLT algorithm optimized for small signal sets / Gianfelici, F; Biagetti, Giorgio; Crippa, Paolo; Turchetti, Claudio. - 1:(2005), pp. 405-408. (Intervento presentato al convegno 2005 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '05) tenutosi a Philadelphia, PA, U.S.A. nel 18 - 23 Marzo 2005) [10.1109/ICASSP.2005.1415136].

A novel KLT algorithm optimized for small signal sets

BIAGETTI, Giorgio;CRIPPA, Paolo;TURCHETTI, Claudio
2005-01-01

Abstract

Karhunen-Loève Transform, being able to represent stochastic processes under appropriate conditions, is a powerful signal processing tool. But the high computational cost incurred in the modeling of long signals has limited its use in the recognition of speech segmented at the word level. In this paper we present a novel algorithm that significantly reduces the computational cost when the number of signals to be treated is small in comparison to their samples.
2005
0-7803-8874-7
978-078038874-1
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/52861
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 1
social impact