We regard second order systems of the form $\ddot q=\nabla_q W (q,t)$, $t\in\R$, $q\in\RN$, where $W(q,t)$ is $\ZN$ periodic in $q$ and almost periodic in $t$. Variational arguments are used to prove the existence of heteroclinic solutions joining almost periodic solutions to the system.
Heteroclinic motions joining almost periodic solutions for a class of Lagrangian systems / Alessio, FRANCESCA GEMMA; C., Carminati; Montecchiari, Piero. - In: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. - ISSN 1078-0947. - STAMPA. - 5:3(1999), pp. 569-584.
Heteroclinic motions joining almost periodic solutions for a class of Lagrangian systems
ALESSIO, FRANCESCA GEMMA;MONTECCHIARI, Piero
1999-01-01
Abstract
We regard second order systems of the form $\ddot q=\nabla_q W (q,t)$, $t\in\R$, $q\in\RN$, where $W(q,t)$ is $\ZN$ periodic in $q$ and almost periodic in $t$. Variational arguments are used to prove the existence of heteroclinic solutions joining almost periodic solutions to the system.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.