In this paper we consider ``slowly'' oscillating perturbations of almost periodic Duffing-like systems, i.e., systems of the form $\ddot u=u-(a(t)+\a(\o t))W'(u)$, $t\in$\R, $u\in$\R$^N$, where $W\in C^{2N}($\R$^N$,\R$)$ is superquadratic and $a$ and $\a$ are positive and almost periodic. By variational methods, we prove that if $\o>0$ is small enough then the system admits a multibump dynamics. As a consequence we get that the system $\ddot u=u-a(t)W'(u)$, $t\in$\R, $u\in$\R$^N$, admits multibump solutions whenever $a$ belongs to an open dense subset of the set of positive almost periodic continuous functions.

Genericity of the multibump dynamics for almost periodic Duffing-like systems / Alessio, FRANCESCA GEMMA; Caldiroli, P.; Montecchiari, Piero. - In: PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH. SECTION A. MATHEMATICS. - ISSN 0308-2105. - STAMPA. - 129A:5(1999), pp. 885-901. [10.1017/S0308210500030985]

Genericity of the multibump dynamics for almost periodic Duffing-like systems

ALESSIO, FRANCESCA GEMMA;MONTECCHIARI, Piero
1999-01-01

Abstract

In this paper we consider ``slowly'' oscillating perturbations of almost periodic Duffing-like systems, i.e., systems of the form $\ddot u=u-(a(t)+\a(\o t))W'(u)$, $t\in$\R, $u\in$\R$^N$, where $W\in C^{2N}($\R$^N$,\R$)$ is superquadratic and $a$ and $\a$ are positive and almost periodic. By variational methods, we prove that if $\o>0$ is small enough then the system admits a multibump dynamics. As a consequence we get that the system $\ddot u=u-a(t)W'(u)$, $t\in$\R, $u\in$\R$^N$, admits multibump solutions whenever $a$ belongs to an open dense subset of the set of positive almost periodic continuous functions.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/52565
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
social impact