In the paper we prove that the Lagrangian system $$\ddot{q} = \alpha(\omega t) V'(q), \quad t \in \R, \ q \in \R^{N},$$ has, for some classes of functions $\alpha$, a chaotic behavior. More precisely the system has multi-bump solutions for all $\omega$ large. These classes of functions include some quasi-periodic and some limit-periodic ones, but not any periodic function. We prove the result using global variational methods.

Chaotic behaviour of rapidly oscillating Lagrangian systems / Alessio, FRANCESCA GEMMA; V., COTI ZELATI; Montecchiari, Piero. - In: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. - ISSN 1078-0947. - STAMPA. - 10:3(2004), pp. 687-707. [10.3934/dcds.2004.10.687]

Chaotic behaviour of rapidly oscillating Lagrangian systems

ALESSIO, FRANCESCA GEMMA;MONTECCHIARI, Piero
2004-01-01

Abstract

In the paper we prove that the Lagrangian system $$\ddot{q} = \alpha(\omega t) V'(q), \quad t \in \R, \ q \in \R^{N},$$ has, for some classes of functions $\alpha$, a chaotic behavior. More precisely the system has multi-bump solutions for all $\omega$ large. These classes of functions include some quasi-periodic and some limit-periodic ones, but not any periodic function. We prove the result using global variational methods.
2004
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/52448
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact