The physiological functions of N-acylethanolamines (NAEs) are poorly understood, although many functions were suggested for these naturally occurring membrane components of plants and animals. The binding with cannabinoid receptors CB1 and CB2 was demonstrated for some NAEs, such as anandamide. However, the chemical nature of these molecules suggests that some of their biological effects on biomembranes could be related, at least partially, to physical interactions with the lipid bilayer. The present work studies the effect of saturated and monoun-saturated NAEs on phospholipase A2 (PLA2) activity, which is dependent on lipid bilayer features. The present study, performed by 2-dimethylamino-(6-lauroyl)-naphthalene (Laurdan) fluorescence, demonstrates that the acyl chain length and the presence of a single double bond are crucial for the enzymatic activity modulation by NAEs. In fact, saturated NAEs with 10 carbon atoms don't affect the PLA2 activity, while NAEs with 12 and 16 carbon atoms largely activate the enzyme. On the other hand, an acyl chain length of 18 carbon atoms, with or without the presence of a double bond, only slightly affects the enzymatic activity. A structural model for NAE-lipid interactions is proposed in order to explain the differences in PLA2 activity modulation by these fatty acid derivatives.

Different modulation of the phospholipase A2 activity by saturated and monounsaturated N-acylethanolamines / Zolese, Giovanna; M., Wozniak; Mariani, Paolo; Saturni, Letizia; Bertoli, Enrico; Ambrosini, Annarina. - In: JOURNAL OF LIPID RESEARCH. - ISSN 0022-2275. - STAMPA. - 44:(2003), pp. 742-753.

Different modulation of the phospholipase A2 activity by saturated and monounsaturated N-acylethanolamines

ZOLESE, GIOVANNA;MARIANI, Paolo;SATURNI, Letizia;BERTOLI, Enrico;AMBROSINI, ANNARINA
2003-01-01

Abstract

The physiological functions of N-acylethanolamines (NAEs) are poorly understood, although many functions were suggested for these naturally occurring membrane components of plants and animals. The binding with cannabinoid receptors CB1 and CB2 was demonstrated for some NAEs, such as anandamide. However, the chemical nature of these molecules suggests that some of their biological effects on biomembranes could be related, at least partially, to physical interactions with the lipid bilayer. The present work studies the effect of saturated and monoun-saturated NAEs on phospholipase A2 (PLA2) activity, which is dependent on lipid bilayer features. The present study, performed by 2-dimethylamino-(6-lauroyl)-naphthalene (Laurdan) fluorescence, demonstrates that the acyl chain length and the presence of a single double bond are crucial for the enzymatic activity modulation by NAEs. In fact, saturated NAEs with 10 carbon atoms don't affect the PLA2 activity, while NAEs with 12 and 16 carbon atoms largely activate the enzyme. On the other hand, an acyl chain length of 18 carbon atoms, with or without the presence of a double bond, only slightly affects the enzymatic activity. A structural model for NAE-lipid interactions is proposed in order to explain the differences in PLA2 activity modulation by these fatty acid derivatives.
2003
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/52034
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 16
social impact