To develop a new method for non-invasive identification of patients prone to ventricular tachyarrhythmia and sudden cardiac death, an adaptive match-filter (AMF) was applied to detect and characterize T-wave alternans (TWA) in 200 coronary artery diseased (CAD) patients compared with 176 healthy (H) subjects. TWA was characterized in terms of duration (TWAD), amplitude (TWAA), and magnitude (TWAM, defined as the product of TWAD times TWAA). A criterion derived from these parameters, estimated over the H-population, allowed discrimination between a risk (TWA+) and a normality (NO TWA) zone in the TWAD-TWAA plane. To gain further ability to discriminate among different risk levels, the TWA+ zone was divided into four sub-zones respectively characterized by low duration and low amplitude (LDLA), low duration and high amplitude (LDHA), high duration and low amplitude (HDLA), and high duration and high amplitude (HDHA). With our methodology, 21 CAD-patients (10.5%) were identified as TWA+, 9 falling in the LDLA zone, 4 in the HDLA, 7 in the LDHA, and 1 in the HDHA. These results are in agreement with clinical expectations and pave the way to further clinical follow-up studies finalized to analyze pathophysiological implications and risk factors associated to each TWA+ zone.
Adaptive match filter based method for time vs. amplitude characterization of microvolt ECG T-wave alternans / Burattini, Laura; Zareba, W; Burattini, Roberto. - In: ANNALS OF BIOMEDICAL ENGINEERING. - ISSN 0090-6964. - 36:(2008), pp. 1558-1564. [10.1007/s10439-008-9528-6]
Adaptive match filter based method for time vs. amplitude characterization of microvolt ECG T-wave alternans
BURATTINI, LAURA;BURATTINI, ROBERTO
2008-01-01
Abstract
To develop a new method for non-invasive identification of patients prone to ventricular tachyarrhythmia and sudden cardiac death, an adaptive match-filter (AMF) was applied to detect and characterize T-wave alternans (TWA) in 200 coronary artery diseased (CAD) patients compared with 176 healthy (H) subjects. TWA was characterized in terms of duration (TWAD), amplitude (TWAA), and magnitude (TWAM, defined as the product of TWAD times TWAA). A criterion derived from these parameters, estimated over the H-population, allowed discrimination between a risk (TWA+) and a normality (NO TWA) zone in the TWAD-TWAA plane. To gain further ability to discriminate among different risk levels, the TWA+ zone was divided into four sub-zones respectively characterized by low duration and low amplitude (LDLA), low duration and high amplitude (LDHA), high duration and low amplitude (HDLA), and high duration and high amplitude (HDHA). With our methodology, 21 CAD-patients (10.5%) were identified as TWA+, 9 falling in the LDLA zone, 4 in the HDLA, 7 in the LDHA, and 1 in the HDHA. These results are in agreement with clinical expectations and pave the way to further clinical follow-up studies finalized to analyze pathophysiological implications and risk factors associated to each TWA+ zone.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.