Fourier-transform infrared spectroscopy, in vitro bioassay and enzyme-linked immunoassay were used to study the structural-functional relationships of recombinant mink growth hormone (mGH), refolded and stored under different conditions. Porcine GH (pGH) was synthesized and used as an example. These two hormones, when refolded and stored the same way, had the same secondary structures, biological and immunological efficacy, and biological potency. Only the immunological potency differed, mGH being significantly less potent than pGH. Renaturation pH and storing frozen or at 4 degrees C in 5% glycerol did not affect either the secondary structure or the activity. However, freeze-drying raised the content of buried alpha-helices and lowered that of solvated alpha-helices and of unordered structures. These conformational changes were associated with a reduction of immunological and biological potency of mGH and of immunological potency of pGH. These findings provide original information on the secondary structure of mGH, and show that conformational changes induced by lyophilization adversely affect its activity.

Mink Growth Hormone Structural-Functional Relationships: Effects of Renaturing and Storage Conditions / Borromeo, V; Sereikaite, J; Bumelis, V. A.; Secchi, C; Scire', ANDREA ANTONINO; Alessio, A; Dauria, S; Tanfani, Fabio. - In: PROTEIN JOURNAL. - ISSN 1572-3887. - (2008).

Mink Growth Hormone Structural-Functional Relationships: Effects of Renaturing and Storage Conditions.

SCIRE', ANDREA ANTONINO;TANFANI, Fabio
2008-01-01

Abstract

Fourier-transform infrared spectroscopy, in vitro bioassay and enzyme-linked immunoassay were used to study the structural-functional relationships of recombinant mink growth hormone (mGH), refolded and stored under different conditions. Porcine GH (pGH) was synthesized and used as an example. These two hormones, when refolded and stored the same way, had the same secondary structures, biological and immunological efficacy, and biological potency. Only the immunological potency differed, mGH being significantly less potent than pGH. Renaturation pH and storing frozen or at 4 degrees C in 5% glycerol did not affect either the secondary structure or the activity. However, freeze-drying raised the content of buried alpha-helices and lowered that of solvated alpha-helices and of unordered structures. These conformational changes were associated with a reduction of immunological and biological potency of mGH and of immunological potency of pGH. These findings provide original information on the secondary structure of mGH, and show that conformational changes induced by lyophilization adversely affect its activity.
2008
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/51508
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact