Abstract—The paper considers the reverberation chamber (RC) method for the measurement of the shielding effectiveness (SE) of coaxial cables with braided shields. In particular, the voltage at the cable termination is numerically computed and compared to that measured in an RC. The RC field is represented by a finite summation of random plane waves, and a finite-difference time-domain (FDTD) code is used to calculate the outer shield current induced by the RC field. The knowledge of the shield current distribution allows the determination of the voltage at the cable termination’s internal circuit after a proper numerical averaging. It is then compared to the measured voltage averaged over stirrer rotations. The method is applied to a commercially available cable model RG58, and using the nominal value for the transfer impedance of this cable type gives results in a satisfactory agreement with the measurements. Finally, the possibility of recovering the transfer impedance from the measured SE of the RC is discussed.

Modeling of the Reverberation Chamber Method for Determining the Shielding Properties of a Coaxial Cable / MARIANI PRIMIANI, Valter; Moglie, Franco; Pastore, A. P.. - In: IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY. - ISSN 0018-9375. - 50,n2:(2008), pp. 246-251. [10.1109/TEMC.2008.922793]

Modeling of the Reverberation Chamber Method for Determining the Shielding Properties of a Coaxial Cable

MARIANI PRIMIANI, Valter;MOGLIE, FRANCO;
2008-01-01

Abstract

Abstract—The paper considers the reverberation chamber (RC) method for the measurement of the shielding effectiveness (SE) of coaxial cables with braided shields. In particular, the voltage at the cable termination is numerically computed and compared to that measured in an RC. The RC field is represented by a finite summation of random plane waves, and a finite-difference time-domain (FDTD) code is used to calculate the outer shield current induced by the RC field. The knowledge of the shield current distribution allows the determination of the voltage at the cable termination’s internal circuit after a proper numerical averaging. It is then compared to the measured voltage averaged over stirrer rotations. The method is applied to a commercially available cable model RG58, and using the nominal value for the transfer impedance of this cable type gives results in a satisfactory agreement with the measurements. Finally, the possibility of recovering the transfer impedance from the measured SE of the RC is discussed.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/51507
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 8
social impact