We have studied the electro-optical and angular behavior of holographic-polymer-dispersed liquid crystal gratings at different wavelengths, in the visible and in the near-infrared range. As usual in these kinds of materials, a strong polarization dependent behavior was observed. Our samples showed very high diffraction efficiency for p-polarized radiation at 1.55 m, which is very interesting for many possible applications in the telecom field. However, we also observed a very unusual behavior for visible p-polarized light and we try to suggest some explanation for that. By analyzing the angular dependence of the diffraction efficiency, we could measure the components of the permittivity modulation tensor and infer important information about the main parameters involved in the grating structure: the degree of phase separation and the anisotropy in the liquid crystal droplet distribution. In our opinion, this simple and nondestructive methodology can be very useful for studying these kinds of materials and getting information on their morphology, in view of optimizing their properties. Finally, we discuss the role of the refractive index optical dispersion in order to describe the behavior of these materials at different wavelengths. These remarks are especially important when properties in the infrared range are extrapolated from measurements in the visible.

Visible and near-infrared characterization and modeling of nanosized holographic-polymer dispersed liquid crystals gratings / Vita, Francesco; A., Marino; V., Tkachenko; G., Abbate; Lucchetta, Daniele Eugenio; L., Criante; Simoni, Francesco. - In: PHYSICAL REVIEW E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS. - ISSN 1539-3755. - 72:(2005), pp. 011702-1-011702-8. [10.1103/PhysRevE.72.011702]

Visible and near-infrared characterization and modeling of nanosized holographic-polymer dispersed liquid crystals gratings

VITA, Francesco;LUCCHETTA, Daniele Eugenio;SIMONI, Francesco
2005-01-01

Abstract

We have studied the electro-optical and angular behavior of holographic-polymer-dispersed liquid crystal gratings at different wavelengths, in the visible and in the near-infrared range. As usual in these kinds of materials, a strong polarization dependent behavior was observed. Our samples showed very high diffraction efficiency for p-polarized radiation at 1.55 m, which is very interesting for many possible applications in the telecom field. However, we also observed a very unusual behavior for visible p-polarized light and we try to suggest some explanation for that. By analyzing the angular dependence of the diffraction efficiency, we could measure the components of the permittivity modulation tensor and infer important information about the main parameters involved in the grating structure: the degree of phase separation and the anisotropy in the liquid crystal droplet distribution. In our opinion, this simple and nondestructive methodology can be very useful for studying these kinds of materials and getting information on their morphology, in view of optimizing their properties. Finally, we discuss the role of the refractive index optical dispersion in order to describe the behavior of these materials at different wavelengths. These remarks are especially important when properties in the infrared range are extrapolated from measurements in the visible.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/51144
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 24
social impact