We report on the solvation properties and intermolecular interactions of a model protein (bovine serum albumine, BSA) in urea aqueous solutions, as obtained by combining small-angle neutron and X-ray scattering experiments. According to a global fit strategy, all the whole set of scattering curves are analysed by considering a unique model which includes the BSA structure, the protein-protein interactions and the thermodynamic exchange process of water/urea molecules at the protein solvent interface. As a main result, the equilibrium constant that accounts for the difference in composition between the bulk solvent and the protein solvation layer is derived. Results confirm that urea preferentially sticks to the protein surface, inducing a noticeable change in both the repulsive and the attractive interaction potentials.

SANS/SAXS study of the BSA solvation properties in aqueous urea solutions via a global fit approach / R., Sinibaldi; Ortore, Maria Grazia; Spinozzi, Francesco; S., Funari; J., Teixeira; Mariani, Paolo. - In: EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS. - ISSN 0175-7571. - STAMPA. - 37:(2008), pp. 673-681. [10.1007/s00249-008-0306-z]

SANS/SAXS study of the BSA solvation properties in aqueous urea solutions via a global fit approach

ORTORE, Maria Grazia;SPINOZZI, Francesco;MARIANI, Paolo
2008-01-01

Abstract

We report on the solvation properties and intermolecular interactions of a model protein (bovine serum albumine, BSA) in urea aqueous solutions, as obtained by combining small-angle neutron and X-ray scattering experiments. According to a global fit strategy, all the whole set of scattering curves are analysed by considering a unique model which includes the BSA structure, the protein-protein interactions and the thermodynamic exchange process of water/urea molecules at the protein solvent interface. As a main result, the equilibrium constant that accounts for the difference in composition between the bulk solvent and the protein solvation layer is derived. Results confirm that urea preferentially sticks to the protein surface, inducing a noticeable change in both the repulsive and the attractive interaction potentials.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/51041
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 27
social impact