The goal of this paper is to show that commercial sensors, whose frequency response is not specifically designed, can be effectively used to measure very fast transient fields applying a proper reconstructing procedure based on the knowledge of the sensor transfer function. To do this, it is necessary to characterize a structure supporting a transverse electromagnetic (TEM) field, that will be used to set up a calibration procedure for elementary magnetic field sensors. The approach is completely analytical and allows us to knowrigorously the field inside the structure. From the knowledge of this field, the transfer function of the sensor, in amplitude and phase, is evaluated up to 2 GHz. The complete characterization of the sensor allows us to reconstruct the sensed field from its output voltage waveform. The calibration procedure is carried out in time domain and therefore the fast Fourier transform (FFT) algorithm is used to achieve the sensor transfer function, as well as an inverse FFT (IFFT) is necessary to retrieve the transient impinging field. An experimental validation of the procedure shows the consistency of the approach.

Measurement of magnetic fields radiated from ESD using field sensors / Cerri, Graziano; Coacci, F.; Fenucci, L.; MARIANI PRIMIANI, Valter. - In: IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY. - ISSN 0018-9375. - 43, n. 2:(2001), pp. 187-196. [10.1109/15.925539]

Measurement of magnetic fields radiated from ESD using field sensors

CERRI, GRAZIANO;MARIANI PRIMIANI, Valter
2001-01-01

Abstract

The goal of this paper is to show that commercial sensors, whose frequency response is not specifically designed, can be effectively used to measure very fast transient fields applying a proper reconstructing procedure based on the knowledge of the sensor transfer function. To do this, it is necessary to characterize a structure supporting a transverse electromagnetic (TEM) field, that will be used to set up a calibration procedure for elementary magnetic field sensors. The approach is completely analytical and allows us to knowrigorously the field inside the structure. From the knowledge of this field, the transfer function of the sensor, in amplitude and phase, is evaluated up to 2 GHz. The complete characterization of the sensor allows us to reconstruct the sensed field from its output voltage waveform. The calibration procedure is carried out in time domain and therefore the fast Fourier transform (FFT) algorithm is used to achieve the sensor transfer function, as well as an inverse FFT (IFFT) is necessary to retrieve the transient impinging field. An experimental validation of the procedure shows the consistency of the approach.
2001
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/50957
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 12
social impact