In this paper an effective unsupervised statistical identification technique for nonstationary nonlinear systems is presented. This technique extracts from the system outputs the multivariate relationships of the system natural modes, by means of the separation property of the Karhunen-Loève transform (KLT). Then, it applies a Self-Organizing Map (SOM) to the KLT output vectors in order to give an optimal representation of data. Finally, it exploits an optimized Expectation Maximization (EM) algorithm to find the optimal parameters of a Gaussian mixture model. The resulting statistical system identification is thus based on the estimation of the multivariate probability density function (PDF) of system outputs, whose convergence towards that computed by kernel estimation has also been proved by verifying the asymptotically vanishing of Kullback-Leibler divergences. A large number of simulations on ECG signals demonstrated the validity and the excellent performance of this technique along with its applicability to noninvasive diagnosis of a large class of medical pathologies originated by unknown, unpractical to measure, physiological factors.

Unsupervised identification of nonstationary dynamical systems using a Gaussian mixture model based on EM clustering of SOMs / Biagetti, Giorgio; Crippa, Paolo; Curzi, Alessandro; Turchetti, Claudio. - (2010), pp. 3509-3512. (Intervento presentato al convegno 2010 IEEE International Symposium on Circuits and Systems: Nano-Bio Circuit Fabrics and Systems (ISCAS 2010) tenutosi a Paris, France nel 30 Maggio - 2 Giugno 2010) [10.1109/ISCAS.2010.5537836].

Unsupervised identification of nonstationary dynamical systems using a Gaussian mixture model based on EM clustering of SOMs

BIAGETTI, Giorgio;CRIPPA, Paolo;CURZI, ALESSANDRO;TURCHETTI, Claudio
2010-01-01

Abstract

In this paper an effective unsupervised statistical identification technique for nonstationary nonlinear systems is presented. This technique extracts from the system outputs the multivariate relationships of the system natural modes, by means of the separation property of the Karhunen-Loève transform (KLT). Then, it applies a Self-Organizing Map (SOM) to the KLT output vectors in order to give an optimal representation of data. Finally, it exploits an optimized Expectation Maximization (EM) algorithm to find the optimal parameters of a Gaussian mixture model. The resulting statistical system identification is thus based on the estimation of the multivariate probability density function (PDF) of system outputs, whose convergence towards that computed by kernel estimation has also been proved by verifying the asymptotically vanishing of Kullback-Leibler divergences. A large number of simulations on ECG signals demonstrated the validity and the excellent performance of this technique along with its applicability to noninvasive diagnosis of a large class of medical pathologies originated by unknown, unpractical to measure, physiological factors.
2010
9781424453085
978-1-4244-5309-2
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/50613
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 4
social impact