In this paper we consider parametric nonlinear elliptic problems driven by the p-Laplacian differential operator and with the parameter $\lambda$ near $\lambda_1$, the principal eigenvalue of the negative Dirichlet p-Laplacian (near resonance). We consider both cases when $\lambda < \lambda_1$ (near resonance from the left) and when $\lambda > \lambda_1$ (near resonance from the right). Our approach combines variational methods based on the critical point theory, together with truncation techniques and Morse theory.

Multiple solutions for nearly resonant nonlinear Dirichlet problems / Papageorgiou, N; Papalini, Francesca. - In: POTENTIAL ANALYSIS. - ISSN 0926-2601. - 37:3(2012), pp. 247-279. [10.1007/s11118-011-9255-8]

Multiple solutions for nearly resonant nonlinear Dirichlet problems

PAPALINI, Francesca
2012-01-01

Abstract

In this paper we consider parametric nonlinear elliptic problems driven by the p-Laplacian differential operator and with the parameter $\lambda$ near $\lambda_1$, the principal eigenvalue of the negative Dirichlet p-Laplacian (near resonance). We consider both cases when $\lambda < \lambda_1$ (near resonance from the left) and when $\lambda > \lambda_1$ (near resonance from the right). Our approach combines variational methods based on the critical point theory, together with truncation techniques and Morse theory.
2012
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/48739
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact