In this paper the learning capabilities of a class of neural networks named Stochastic Approximate Identity Neural Networks (SAINNs) have been analyzed. In particular these networks are able to approximate a large class of stochastic processes from the knowledge of their covariance function.

Learning of SAINNs from covariance function: Historical learning / Crippa, Paolo; Turchetti, Claudio. - 2773:(2003), pp. 177-183. [10.1007/b12002]

Learning of SAINNs from covariance function: Historical learning

CRIPPA, Paolo;TURCHETTI, Claudio
2003-01-01

Abstract

In this paper the learning capabilities of a class of neural networks named Stochastic Approximate Identity Neural Networks (SAINNs) have been analyzed. In particular these networks are able to approximate a large class of stochastic processes from the knowledge of their covariance function.
2003
Knowledge-Based Intelligent Information and Engineering Systems - 7th International Conference (KES 2003) - Lecture Notes in Artificial Intelligence (Subseries of Lecture Notes in Computer Science), Part I
9783540408031
3-540-40803-7
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/42844
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 1
social impact