In this paper, we prove the Pohozaev identity for the following fractional nonlinear elliptic equation: (Formula presented.) where N≥2, s∈(0,1), (-Δ)s denotes the fractional Laplacian operator, and g:R→R is a locally Hölder continuous function. Our proof rests on a regularity result for bounded distributional solutions of the above equation, an integration by parts formula for Ds,2∩C2s+ε functions with locally bounded gradient and vector fields of class Cc0,1, and a limiting procedure.

The Fractional Pohozaev identity in RN / Ambrosio, V.. - In: THE JOURNAL OF GEOMETRIC ANALYSIS. - ISSN 1050-6926. - 35:9(2025). [10.1007/s12220-025-02083-4]

The Fractional Pohozaev identity in RN

Ambrosio V.
2025-01-01

Abstract

In this paper, we prove the Pohozaev identity for the following fractional nonlinear elliptic equation: (Formula presented.) where N≥2, s∈(0,1), (-Δ)s denotes the fractional Laplacian operator, and g:R→R is a locally Hölder continuous function. Our proof rests on a regularity result for bounded distributional solutions of the above equation, an integration by parts formula for Ds,2∩C2s+ε functions with locally bounded gradient and vector fields of class Cc0,1, and a limiting procedure.
2025
fractional Laplacian operator; Hölder regularity; Pohozaev identity
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/350340
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 3
social impact