In this paper, we investigate the following fractional Choquard–Kirchhoff type equation: (Formula presented) where N ≥ 2, a, b > 0 are constants, (−∆)s is the fractional Laplacian operator of order s ∈ (0, 1), Iα denotes the Riesz potential of order α ∈ ((N − 4s)+, N), F ∈ C1(R) is a general nonlinearity of Berestycki–Lions type. Applying suitable variational methods, we prove the existence of a least energy solution. Moreover, assuming that F is even and monotone in (0, ∞), we show that the constructed solution has constant sign, is radially symmetric and decreasing.

LEAST ENERGY SOLUTIONS FOR NONLINEAR FRACTIONAL CHOQUARD–KIRCHHOFF EQUATIONS IN RN / Ambrosio, V.; Isernia, T.; Temperini, L.. - In: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. - ISSN 1078-0947. - 45:12(2025), pp. 4817-4851. [10.3934/dcds.2025076]

LEAST ENERGY SOLUTIONS FOR NONLINEAR FRACTIONAL CHOQUARD–KIRCHHOFF EQUATIONS IN RN

Ambrosio V.;Isernia T.
;
Temperini L.
2025-01-01

Abstract

In this paper, we investigate the following fractional Choquard–Kirchhoff type equation: (Formula presented) where N ≥ 2, a, b > 0 are constants, (−∆)s is the fractional Laplacian operator of order s ∈ (0, 1), Iα denotes the Riesz potential of order α ∈ ((N − 4s)+, N), F ∈ C1(R) is a general nonlinearity of Berestycki–Lions type. Applying suitable variational methods, we prove the existence of a least energy solution. Moreover, assuming that F is even and monotone in (0, ∞), we show that the constructed solution has constant sign, is radially symmetric and decreasing.
2025
Fractional Laplacian; Kirchhoff-Choquard equation; Pohožaev identity; variational methods
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/350338
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact