The high accumulation of plastic waste in the environment has led to great interest in biodegradable polymers, such as polylactic acid (PLA) or polyhydroxyalkanoates (PHAs). Their benefits, combined with the application of electrospinning technology, represent an innovative proposal for the food packaging industry. This article provides a comprehensive review of the latest developments of PLA- and PHA-biopolyester-based electrospun materials for food packaging applications, summarizing the reported technologies, material properties, applications, and invention patents. In addition, the legislation used to assess their biodegradability is also detailed. Electrospun packaging materials are largely developed through uniaxial, coaxial, emulsion, multiaxial, and needleless techniques. PLA- and PHA-biopolyester-based electrospun materials can be obtained as single and multilayer packaging structures, and the incorporation of natural extracts, organic compounds, and nanoparticles has become a great strategy for designing active food packaging systems. The biodegradability of electrospun materials has mainly been evaluated in soil, compost, and aquatic systems through ASTM and ISO normatives. In this review, the dependence of the biodegradation process on the polymer type, conditions, and test methods is clearly reviewed. Moreover, these biodegradable electrospun materials have shown excellent antioxidant and antimicrobial properties, resulting in a great method for extending the shelf life of fruits, bread, fish, and meat products.

PLA- and PHA-Biopolyester-Based Electrospun Materials: Development, Legislation, and Food Packaging Applications / Patiño Vidal, Cristian; Muñoz-Shugulí, Cristina; Guivier, Manon; Puglia, Débora; Luzi, Francesca; Rojas, Adrián; Velásquez, Eliezer; Galotto, María José; López-de-Dicastillo, Carol. - In: MOLECULES. - ISSN 1420-3049. - 29:22(2024). [10.3390/molecules29225452]

PLA- and PHA-Biopolyester-Based Electrospun Materials: Development, Legislation, and Food Packaging Applications

Luzi, Francesca;
2024-01-01

Abstract

The high accumulation of plastic waste in the environment has led to great interest in biodegradable polymers, such as polylactic acid (PLA) or polyhydroxyalkanoates (PHAs). Their benefits, combined with the application of electrospinning technology, represent an innovative proposal for the food packaging industry. This article provides a comprehensive review of the latest developments of PLA- and PHA-biopolyester-based electrospun materials for food packaging applications, summarizing the reported technologies, material properties, applications, and invention patents. In addition, the legislation used to assess their biodegradability is also detailed. Electrospun packaging materials are largely developed through uniaxial, coaxial, emulsion, multiaxial, and needleless techniques. PLA- and PHA-biopolyester-based electrospun materials can be obtained as single and multilayer packaging structures, and the incorporation of natural extracts, organic compounds, and nanoparticles has become a great strategy for designing active food packaging systems. The biodegradability of electrospun materials has mainly been evaluated in soil, compost, and aquatic systems through ASTM and ISO normatives. In this review, the dependence of the biodegradation process on the polymer type, conditions, and test methods is clearly reviewed. Moreover, these biodegradable electrospun materials have shown excellent antioxidant and antimicrobial properties, resulting in a great method for extending the shelf life of fruits, bread, fish, and meat products.
2024
compostability; electrospinning; polyhydroxyalkanoates; polylactic acid
File in questo prodotto:
File Dimensione Formato  
PLA- and PHA-Biopolyester-Based Electrospun Materials Development, Legislation, and Food Packaging Applications.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso: Creative commons
Dimensione 2.32 MB
Formato Adobe PDF
2.32 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/349772
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 14
social impact