This paper describes the first version of the MAR package, designed to estimate Matrix-valued Auto-Regressive (MAR) models in gretl. The current version of the package estimates the MAR(1) model via two techniques: Least Squares Estimation (LSE) and Maximum Likelihood Estimation (MLE). It provides standard estimation output in gretl formats, including estimated coefficients, standard errors, t-statistics, p-values, and some basic regression statistics. The package also calculates and displays the impulse response functions. For ease of use, the package includes a simple Graphical User Interface (GUI), while offering full functionality via the gretl scripting language. Two examples, one using real data and the other using simulated data, illustrate its relevance in economic modeling.

Matrix-valued AutoRegressive (MAR) models in gretl / Bucci, Andrea; Palomba, Giulio; Tedeschi, Marco. - In: COMPUTATIONAL STATISTICS. - ISSN 0943-4062. - STAMPA. - (In corso di stampa).

Matrix-valued AutoRegressive (MAR) models in gretl

Palomba, Giulio;Tedeschi, Marco
In corso di stampa

Abstract

This paper describes the first version of the MAR package, designed to estimate Matrix-valued Auto-Regressive (MAR) models in gretl. The current version of the package estimates the MAR(1) model via two techniques: Least Squares Estimation (LSE) and Maximum Likelihood Estimation (MLE). It provides standard estimation output in gretl formats, including estimated coefficients, standard errors, t-statistics, p-values, and some basic regression statistics. The package also calculates and displays the impulse response functions. For ease of use, the package includes a simple Graphical User Interface (GUI), while offering full functionality via the gretl scripting language. Two examples, one using real data and the other using simulated data, illustrate its relevance in economic modeling.
In corso di stampa
Matrix-AutoRegressive Model, Multivariate Time-Series Analysis, VAR, Gretl
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/348686
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact