This paper presents the preliminary results of the MAXFISH project, which aims to develop an integrated methodological and technological framework for modeling, simulating, and controlling coordinated bio-inspired robotic fish shoals. The system combines a digital twin platform, realized in MATLAB/Simulink, with a max-plus algebraic model to address multi-agent coordination for underwater survey and monitoring missions. The digital twin enables the estimation of travel times based on the kinematic and dynamic behavior of the robotic fish, while the max-plus framework allows formal scheduling analysis of cyclic exploration tasks, ensuring mutual exclusion on shared resources and respecting mission constraints. A Graphical User Interface (GUI) further supports mission planning, enabling users to define points of interest and automatically compute overall mission times. The novelty of this approach lies in the integration of max-plus algebra techniques with simulation tools for underwater inspections. The proposed framework also supports Hardware-in-the-Loop (HIL) and Software-in-the-Loop (SIL) testing, facilitating the validation of coordination strategies with real robotic agents and communication buoys. Preliminary results demonstrate the feasibility of this hybrid simulation and its potential to streamline the deployment of coordinated multi-agent underwater systems.

Simulation and Coordination of Autonomous Bio-Inspired Underwater Agents / Scaradozzi, David; Bartolucci, Veronica; Gioiello, Flavia; Costa, Daniele; Castagna, Benedetta; Zattoni, Elena; Antonelli, Gianluca; Di Vito, Daniele; Marino, Alessandro; Arrichiello, Filippo; Di Lillo, Paolo; Chiaverini, Stefano; Gillini, Giuseppe. - In: IEEE ACCESS. - ISSN 2169-3536. - 13:(2025), pp. 175870-175883. [10.1109/access.2025.3617767]

Simulation and Coordination of Autonomous Bio-Inspired Underwater Agents

Scaradozzi, David;Bartolucci, Veronica
;
Gioiello, Flavia;Costa, Daniele;Castagna, Benedetta;
2025-01-01

Abstract

This paper presents the preliminary results of the MAXFISH project, which aims to develop an integrated methodological and technological framework for modeling, simulating, and controlling coordinated bio-inspired robotic fish shoals. The system combines a digital twin platform, realized in MATLAB/Simulink, with a max-plus algebraic model to address multi-agent coordination for underwater survey and monitoring missions. The digital twin enables the estimation of travel times based on the kinematic and dynamic behavior of the robotic fish, while the max-plus framework allows formal scheduling analysis of cyclic exploration tasks, ensuring mutual exclusion on shared resources and respecting mission constraints. A Graphical User Interface (GUI) further supports mission planning, enabling users to define points of interest and automatically compute overall mission times. The novelty of this approach lies in the integration of max-plus algebra techniques with simulation tools for underwater inspections. The proposed framework also supports Hardware-in-the-Loop (HIL) and Software-in-the-Loop (SIL) testing, facilitating the validation of coordination strategies with real robotic agents and communication buoys. Preliminary results demonstrate the feasibility of this hybrid simulation and its potential to streamline the deployment of coordinated multi-agent underwater systems.
2025
digital twin; Max-plus algebra; multi-agent systems; underwater robotics
File in questo prodotto:
File Dimensione Formato  
Scaradozzi_Simulation-Coordination-Autonomous-Bio-Inspired_2025.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso: Creative commons
Dimensione 2.54 MB
Formato Adobe PDF
2.54 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/348640
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact