The aim of this paper is to study the following (p,q)-Laplacian problem: {−εpΔpv−εqΔqv+V(x)(|v|p−2v+|v|q−2v)=f(v) in RN,v∈W1,p(RN)∩W1,q(RN),v>0 in RN, where ε>0 is a small parameter, N≥3, 1

Existence and concentration results for a (p,q)-Laplacian problem with a general critical nonlinearity / Ambrosio, V.. - In: JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS. - ISSN 0022-247X. - 539:2(2024). [10.1016/j.jmaa.2024.128544]

Existence and concentration results for a (p,q)-Laplacian problem with a general critical nonlinearity

Ambrosio V.
2024-01-01

Abstract

The aim of this paper is to study the following (p,q)-Laplacian problem: {−εpΔpv−εqΔqv+V(x)(|v|p−2v+|v|q−2v)=f(v) in RN,v∈W1,p(RN)∩W1,q(RN),v>0 in RN, where ε>0 is a small parameter, N≥3, 1
2024
(p,q)-Laplacian operator; Critical growth; Variational methods
File in questo prodotto:
File Dimensione Formato  
Ambrosio_Existence-concentration-results_2024.pdf

Open Access dal 25/05/2025

Tipologia: Documento in post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza d'uso: Creative commons
Dimensione 580.77 kB
Formato Adobe PDF
580.77 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/348498
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact