We consider the fractional relativistic Schrödinger-Choquard equation (equation presented), where ϵ > 0 is a small parameter, s (0, 1), m > 0, N > 2s, μ (0, 2s), (-δ + m2)s is the fractional relativistic Schrödinger operator, V: ℝN → ℝ is a continuous potential having a local minimum, f: ℝ → ℝ is a continuous nonlinearity with subcritical growth at infinity and F(t) =f0tf(τ)dτ. Exploiting appropriate variational arguments, we construct a family of solutions concentrating around the local minimum of V as ϵ → 0.
Concentration phenomena for the fractional relativistic Schrödinger-Choquard equation / Ambrosio, V.. - In: COMMUNICATIONS IN CONTEMPORARY MATHEMATICS. - ISSN 0219-1997. - 26:9(2024). [10.1142/S021919972350061X]
Concentration phenomena for the fractional relativistic Schrödinger-Choquard equation
Ambrosio V.
2024-01-01
Abstract
We consider the fractional relativistic Schrödinger-Choquard equation (equation presented), where ϵ > 0 is a small parameter, s (0, 1), m > 0, N > 2s, μ (0, 2s), (-δ + m2)s is the fractional relativistic Schrödinger operator, V: ℝN → ℝ is a continuous potential having a local minimum, f: ℝ → ℝ is a continuous nonlinearity with subcritical growth at infinity and F(t) =f0tf(τ)dτ. Exploiting appropriate variational arguments, we construct a family of solutions concentrating around the local minimum of V as ϵ → 0.| File | Dimensione | Formato | |
|---|---|---|---|
|
Ambrosio_Concentration-phenomena-fractional-relativistic_2024.pdf
Open Access dal 25/02/2025
Tipologia:
Documento in post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza d'uso:
Licenza specifica dell'editore
Dimensione
603.23 kB
Formato
Adobe PDF
|
603.23 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


