We focus on the following fractional (p, q)-Choquard problem: (Formula Presented) where ε > 0 is a small parameter, 0 < s < 1, 1 < p < q < Ns , 0 < μ < sp, (−Δ)sr, with r ∈ {p, q}, is the fractional r-Laplacian operator, V: ℝN → ℝ is a positive continuous potential satisfying a local condition, f: ℝ → ℝ is a continuous nonlinearity with subcritical growth at infinity and F(t) = ∫0t f(τ) dτ. Applying suitable variational and topological methods, we relate the number of solutions with the topology of the set where the potential V attains its minimum value.

Multiple concentrating solutions for a fractional (p, q)-Choquard equation / Ambrosio, V.. - In: ADVANCED NONLINEAR STUDIE. - ISSN 2169-0375. - 24:2(2024), pp. 510-541. [10.1515/ans-2023-0125]

Multiple concentrating solutions for a fractional (p, q)-Choquard equation

Ambrosio V.
2024-01-01

Abstract

We focus on the following fractional (p, q)-Choquard problem: (Formula Presented) where ε > 0 is a small parameter, 0 < s < 1, 1 < p < q < Ns , 0 < μ < sp, (−Δ)sr, with r ∈ {p, q}, is the fractional r-Laplacian operator, V: ℝN → ℝ is a positive continuous potential satisfying a local condition, f: ℝ → ℝ is a continuous nonlinearity with subcritical growth at infinity and F(t) = ∫0t f(τ) dτ. Applying suitable variational and topological methods, we relate the number of solutions with the topology of the set where the potential V attains its minimum value.
2024
fractional (p, q)-Laplacian operator; Ljusternik–Schnirelmann theory; penalization technique
File in questo prodotto:
File Dimensione Formato  
Ambrosio_Multiple-concentrating-solutions-fractional_2024.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso: Creative commons
Dimensione 1.05 MB
Formato Adobe PDF
1.05 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/348493
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 14
social impact