In this paper we prove a strong version of the Hilbert Nullstellensatz in thering $\mathbb H[q_1,\ldots,q_n]$ of slice regular polynomials in severalquaternionic variables. Our proof deeply depends on a detailed analysis of thecommon zeros of slice regular polynomials which belong to an ideal in $\mathbbH[q_1,\ldots,q_n]$. This study motivates the introduction of a new notion ofalgebraic set in the quaternionic setting, which allows us to define aZariski-type topology on $\mathbb H^n$.
A Strong Version of the Hilbert Nullstellensatz for slice regular polynomials in several quaternionic variables / Gori, Anna; Sarfatti, Giulia; Vlacci, Fabio. - In: JOURNAL OF ALGEBRA. - ISSN 0021-8693. - (In corso di stampa).
A Strong Version of the Hilbert Nullstellensatz for slice regular polynomials in several quaternionic variables
Giulia Sarfatti;Fabio Vlacci
In corso di stampa
Abstract
In this paper we prove a strong version of the Hilbert Nullstellensatz in thering $\mathbb H[q_1,\ldots,q_n]$ of slice regular polynomials in severalquaternionic variables. Our proof deeply depends on a detailed analysis of thecommon zeros of slice regular polynomials which belong to an ideal in $\mathbbH[q_1,\ldots,q_n]$. This study motivates the introduction of a new notion ofalgebraic set in the quaternionic setting, which allows us to define aZariski-type topology on $\mathbb H^n$.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


