In this paper we prove a strong version of the Hilbert Nullstellensatz in thering $\mathbb H[q_1,\ldots,q_n]$ of slice regular polynomials in severalquaternionic variables. Our proof deeply depends on a detailed analysis of thecommon zeros of slice regular polynomials which belong to an ideal in $\mathbbH[q_1,\ldots,q_n]$. This study motivates the introduction of a new notion ofalgebraic set in the quaternionic setting, which allows us to define aZariski-type topology on $\mathbb H^n$.

A Strong Version of the Hilbert Nullstellensatz for slice regular polynomials in several quaternionic variables / Gori, Anna; Sarfatti, Giulia; Vlacci, Fabio. - In: JOURNAL OF ALGEBRA. - ISSN 0021-8693. - (In corso di stampa).

A Strong Version of the Hilbert Nullstellensatz for slice regular polynomials in several quaternionic variables

Giulia Sarfatti;Fabio Vlacci
In corso di stampa

Abstract

In this paper we prove a strong version of the Hilbert Nullstellensatz in thering $\mathbb H[q_1,\ldots,q_n]$ of slice regular polynomials in severalquaternionic variables. Our proof deeply depends on a detailed analysis of thecommon zeros of slice regular polynomials which belong to an ideal in $\mathbbH[q_1,\ldots,q_n]$. This study motivates the introduction of a new notion ofalgebraic set in the quaternionic setting, which allows us to define aZariski-type topology on $\mathbb H^n$.
In corso di stampa
Mathematics - Complex Variables; Mathematics - Complex Variables; Mathematics - Algebraic Geometry; 30G35, 16S36, 15A54
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/348412
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact