This paper presents a distributed measurement system intended to effectively monitor the health status of switchgears under varying temperature conditions. In particular, thermocouples are deployed as temperature sensors for the continuous monitoring of a medium-voltage (MV) switchgear. Then, by integrating a low-cost microcontroller unit, the proposed system can implement previously trained unsupervised learning techniques for health status evaluation. This approach enables the early detection of potential faults by identifying anomalous temperature patterns, thus supporting predictive maintenance and extending the lifespan of switchgears. The results show strong clustering performance with low execution times, highlighting the suitability of the method for resource-constrained hardware. Furthermore, onboard temperature processing eliminates the need for data transmission to remote servers, reducing latency and communication overhead while improving system responsiveness. The paper includes a numerical analysis on synthetic data as well as a validation on real measurements. Overall, the presented distributed measurement system offers a scalable and cost-effective solution to enhance the reliability and safety of MV switchgears.
Fault Detection in MV Switchgears Through Unsupervised Learning of Temperature Conditions / Iadarola, G.; Mingotti, A.; Negri, V.; Spinsante, S.. - In: SENSORS. - ISSN 1424-8220. - 25:15(2025). [10.3390/s25154818]
Fault Detection in MV Switchgears Through Unsupervised Learning of Temperature Conditions
Iadarola G.
Primo
Conceptualization
;Spinsante S.Ultimo
Funding Acquisition
2025-01-01
Abstract
This paper presents a distributed measurement system intended to effectively monitor the health status of switchgears under varying temperature conditions. In particular, thermocouples are deployed as temperature sensors for the continuous monitoring of a medium-voltage (MV) switchgear. Then, by integrating a low-cost microcontroller unit, the proposed system can implement previously trained unsupervised learning techniques for health status evaluation. This approach enables the early detection of potential faults by identifying anomalous temperature patterns, thus supporting predictive maintenance and extending the lifespan of switchgears. The results show strong clustering performance with low execution times, highlighting the suitability of the method for resource-constrained hardware. Furthermore, onboard temperature processing eliminates the need for data transmission to remote servers, reducing latency and communication overhead while improving system responsiveness. The paper includes a numerical analysis on synthetic data as well as a validation on real measurements. Overall, the presented distributed measurement system offers a scalable and cost-effective solution to enhance the reliability and safety of MV switchgears.| File | Dimensione | Formato | |
|---|---|---|---|
|
sensors-25-04818-v2.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso:
Creative commons
Dimensione
1.88 MB
Formato
Adobe PDF
|
1.88 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


