The aim of this work is to evaluate the influence of the surface deformations of an open inflatable wing section on aerodynamic performance and boundary layer separation phenomena. The inflation/deflation processes are allowed by an air intake placed on the bottom side of the model. Due to its low rigidity, non-contact measurements are required. Therefore, an infrared thermography technique was applied in order to detect local surface deformations and local separation phenomena. Additionally, the inflation and deflation of the whole wing were studied through an innovative approach, introduced by the authors, based on a piezoelectric sensor. It is important to note that open and closed wing sections exhibit very different aerodynamic behavior. For these reasons, both cases were investigated in the following research. The impact of deformation on the wing’s aerodynamic performance was assessed by means of wind tunnel tests. The inflatable wing presented lower lift and higher drag than the corresponding rigid wing due to the fabric’s deformations. Furthermore, the lift and moment coefficient curves were strongly related to the wing’s inflation. In particular, there was a change in the slope of the lift curve and a drop in the moment coefficient when the wing inflated. Lastly, the results provided evidence that a thermographic approach can be used to qualitatively detect local deformations of an inflatable wing and that a piezoelectric sensor can be used feasibly in detecting the inflation and deflation phases of a wing.

Qualitative Evaluation of Inflatable Wing Deformations Through Infrared Thermography and Piezoelectric Sensing / Giammichele, L.; D'Alessandro, V.; Falone, M.; Ricci, R.. - In: ENG. - ISSN 2673-4117. - 6:4(2025). [10.3390/eng6040070]

Qualitative Evaluation of Inflatable Wing Deformations Through Infrared Thermography and Piezoelectric Sensing

Giammichele L.
;
D'Alessandro V.;Falone M.;Ricci R.
2025-01-01

Abstract

The aim of this work is to evaluate the influence of the surface deformations of an open inflatable wing section on aerodynamic performance and boundary layer separation phenomena. The inflation/deflation processes are allowed by an air intake placed on the bottom side of the model. Due to its low rigidity, non-contact measurements are required. Therefore, an infrared thermography technique was applied in order to detect local surface deformations and local separation phenomena. Additionally, the inflation and deflation of the whole wing were studied through an innovative approach, introduced by the authors, based on a piezoelectric sensor. It is important to note that open and closed wing sections exhibit very different aerodynamic behavior. For these reasons, both cases were investigated in the following research. The impact of deformation on the wing’s aerodynamic performance was assessed by means of wind tunnel tests. The inflatable wing presented lower lift and higher drag than the corresponding rigid wing due to the fabric’s deformations. Furthermore, the lift and moment coefficient curves were strongly related to the wing’s inflation. In particular, there was a change in the slope of the lift curve and a drop in the moment coefficient when the wing inflated. Lastly, the results provided evidence that a thermographic approach can be used to qualitatively detect local deformations of an inflatable wing and that a piezoelectric sensor can be used feasibly in detecting the inflation and deflation phases of a wing.
2025
ENG
boundary layer separation; inflatable wing; infrared thermography; paragliding
File in questo prodotto:
File Dimensione Formato  
75_ENG_compressed.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso: Creative commons
Dimensione 995.19 kB
Formato Adobe PDF
995.19 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/347035
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact