The mixing of Guanosine (Gua) and Guanosine 5′-monophosphate (GMP) in water in selected compositions yields highly hydrated, transparent, and self-healing self-assembled supramolecular G-hydrogels, attractive for biomedical applications. This work investigates how hydrogel composition affects solute transport, including diffusion, binding, loading, and release properties, using a set of fluorescent probes with varying size and polarity. Although small/wide-angle X-ray scattering techniques showed that no structural changes are induced by probe addition, even when intercalation into G-quadruplexes is expected, the internal mesh structure of the hydrogel, modulated by the Gua:GMP ratio, directly impacts probe diffusivity and loading. Tighter networks (e.g., 1:1) slow diffusion and enhance retention compared to looser configurations (e.g., 1:4). Moreover, UV-visible titrations revealed markedly different binding affinities (Kb ≈ 5.7 × 104 M-1 for DAPI, 8.0 × 103 M-1 for ThT, and 1.4 × 102 M-1 for RhB), which are expected to result in lower diffusion coefficients and slower release, especially for DAPI and ThT. Indeed, diffusion coefficients, obtained via fluorescence recovery after photobleaching and time-resolved fluorescence spectroscopy, reach 90, 20, and 60 μm2/s for FITC-dextran, ThT, and RhB, respectively. Probe release kinetics, modeled via Weibull fitting, indicated sustained release with characteristic times (τ) between 9.6 and 23.2 h and β ≈ 1 in 1× PBS, consistent with predominantly Fickian diffusion. Remarkably, switching to 10× PBS significantly accelerated release (τ reduced by ≈ 40-50%), suggesting that ionic strength and/or pH changes critically affect not only probe-hydrogel interactions but also the internal gel architecture, altering porosity, mesh size, and network tortuosity, thus enhancing molecular mobility. Overall, the G-hydrogel system offers a structurally tunable and composition-dependent platform capable of finely regulating molecular transport and release profiles, making it highly suitable for controlled drug delivery and adaptive biomaterial applications.

Transport Properties of Self-Assembling G-Hydrogels: Evidence for a Tunable Fickian Diffusivity / Pepe, Alessia; Moretti, Paolo; Mariani, Paolo; Notarstefano, Valentina; Ripanti, Francesca. - In: JOURNAL OF PHYSICAL CHEMISTRY. B, CONDENSED MATTER, MATERIALS, SURFACES, INTERFACES & BIOPHYSICAL. - ISSN 1520-6106. - 129:21(2025), pp. 5136-5149. [10.1021/acs.jpcb.5c00564]

Transport Properties of Self-Assembling G-Hydrogels: Evidence for a Tunable Fickian Diffusivity

Pepe, Alessia
;
Moretti, Paolo;Mariani, Paolo
;
Ripanti, Francesca
2025-01-01

Abstract

The mixing of Guanosine (Gua) and Guanosine 5′-monophosphate (GMP) in water in selected compositions yields highly hydrated, transparent, and self-healing self-assembled supramolecular G-hydrogels, attractive for biomedical applications. This work investigates how hydrogel composition affects solute transport, including diffusion, binding, loading, and release properties, using a set of fluorescent probes with varying size and polarity. Although small/wide-angle X-ray scattering techniques showed that no structural changes are induced by probe addition, even when intercalation into G-quadruplexes is expected, the internal mesh structure of the hydrogel, modulated by the Gua:GMP ratio, directly impacts probe diffusivity and loading. Tighter networks (e.g., 1:1) slow diffusion and enhance retention compared to looser configurations (e.g., 1:4). Moreover, UV-visible titrations revealed markedly different binding affinities (Kb ≈ 5.7 × 104 M-1 for DAPI, 8.0 × 103 M-1 for ThT, and 1.4 × 102 M-1 for RhB), which are expected to result in lower diffusion coefficients and slower release, especially for DAPI and ThT. Indeed, diffusion coefficients, obtained via fluorescence recovery after photobleaching and time-resolved fluorescence spectroscopy, reach 90, 20, and 60 μm2/s for FITC-dextran, ThT, and RhB, respectively. Probe release kinetics, modeled via Weibull fitting, indicated sustained release with characteristic times (τ) between 9.6 and 23.2 h and β ≈ 1 in 1× PBS, consistent with predominantly Fickian diffusion. Remarkably, switching to 10× PBS significantly accelerated release (τ reduced by ≈ 40-50%), suggesting that ionic strength and/or pH changes critically affect not only probe-hydrogel interactions but also the internal gel architecture, altering porosity, mesh size, and network tortuosity, thus enhancing molecular mobility. Overall, the G-hydrogel system offers a structurally tunable and composition-dependent platform capable of finely regulating molecular transport and release profiles, making it highly suitable for controlled drug delivery and adaptive biomaterial applications.
2025
Diffusion, Hydrogels, Probes, Solution chemistry, Transport properties
File in questo prodotto:
File Dimensione Formato  
2025-transport-properties-Alessia.pdf

accesso aperto

Descrizione: versione editoriale
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso: Creative commons
Dimensione 7.17 MB
Formato Adobe PDF
7.17 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/346973
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact