In this paper, we prove the existence, uniqueness and qualitative properties of heteroclinic solution for a class of autonomous quasilinear ordinary differential equations of the Allen–Cahn type given by − (φ(|ú|)ú)́ + V ́(u) = 0 in R, where V is a double-well potential with minima at t = ±α and φ : (0, +∞) → (0, +∞) is a C1 function satisfying some technical assumptions. Our results include the classic case φ(t) = tp−2, which is related to the celebrated p-Laplacian operator, presenting the explicit solution in this specific scenario. Moreover, we also study the case φ(t) = √1+1t2 , which is directly associated with the prescribed mean curvature operator.
Uniqueness of Heteroclinic Solutions in a Class of Autonomous Quasilinear ODE Problems / Alves, Claudianor O.; Isneri, Renan J. S.; Montecchiari, Piero. - In: ANALYSIS AND APPLICATIONS. - ISSN 0219-5305. - ELETTRONICO. - (2025), pp. 1-36. [Epub ahead of print] [10.1142/s0219530525500034]
Uniqueness of Heteroclinic Solutions in a Class of Autonomous Quasilinear ODE Problems
Montecchiari, Piero
2025-01-01
Abstract
In this paper, we prove the existence, uniqueness and qualitative properties of heteroclinic solution for a class of autonomous quasilinear ordinary differential equations of the Allen–Cahn type given by − (φ(|ú|)ú)́ + V ́(u) = 0 in R, where V is a double-well potential with minima at t = ±α and φ : (0, +∞) → (0, +∞) is a C1 function satisfying some technical assumptions. Our results include the classic case φ(t) = tp−2, which is related to the celebrated p-Laplacian operator, presenting the explicit solution in this specific scenario. Moreover, we also study the case φ(t) = √1+1t2 , which is directly associated with the prescribed mean curvature operator.File | Dimensione | Formato | |
---|---|---|---|
uniquenessAnalysisApp.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso:
Tutti i diritti riservati
Dimensione
9.48 MB
Formato
Adobe PDF
|
9.48 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Claudianor-Renan-Piero(Final Version).pdf
embargo fino al 26/02/2026
Tipologia:
Documento in post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza d'uso:
Tutti i diritti riservati
Dimensione
446.02 kB
Formato
Adobe PDF
|
446.02 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.