In this paper, we prove the existence, uniqueness and qualitative properties of heteroclinic solution for a class of autonomous quasilinear ordinary differential equations of the Allen–Cahn type given by − (φ(|ú|)ú)́ + V ́(u) = 0 in R, where V is a double-well potential with minima at t = ±α and φ : (0, +∞) → (0, +∞) is a C1 function satisfying some technical assumptions. Our results include the classic case φ(t) = tp−2, which is related to the celebrated p-Laplacian operator, presenting the explicit solution in this specific scenario. Moreover, we also study the case φ(t) = √1+1t2 , which is directly associated with the prescribed mean curvature operator.

Uniqueness of Heteroclinic Solutions in a Class of Autonomous Quasilinear ODE Problems / Alves, Claudianor O.; Isneri, Renan J. S.; Montecchiari, Piero. - In: ANALYSIS AND APPLICATIONS. - ISSN 0219-5305. - ELETTRONICO. - (2025), pp. 1-36. [Epub ahead of print] [10.1142/s0219530525500034]

Uniqueness of Heteroclinic Solutions in a Class of Autonomous Quasilinear ODE Problems

Montecchiari, Piero
2025-01-01

Abstract

In this paper, we prove the existence, uniqueness and qualitative properties of heteroclinic solution for a class of autonomous quasilinear ordinary differential equations of the Allen–Cahn type given by − (φ(|ú|)ú)́ + V ́(u) = 0 in R, where V is a double-well potential with minima at t = ±α and φ : (0, +∞) → (0, +∞) is a C1 function satisfying some technical assumptions. Our results include the classic case φ(t) = tp−2, which is related to the celebrated p-Laplacian operator, presenting the explicit solution in this specific scenario. Moreover, we also study the case φ(t) = √1+1t2 , which is directly associated with the prescribed mean curvature operator.
2025
File in questo prodotto:
File Dimensione Formato  
uniquenessAnalysisApp.pdf

Solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso: Tutti i diritti riservati
Dimensione 9.48 MB
Formato Adobe PDF
9.48 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Claudianor-Renan-Piero(Final Version).pdf

embargo fino al 26/02/2026

Tipologia: Documento in post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza d'uso: Tutti i diritti riservati
Dimensione 446.02 kB
Formato Adobe PDF
446.02 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/344432
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 1
social impact