Tourism is nowadays fully acknowledged as a leading industry contributing to boost the economic development of a country. This growing recognition has led researchers and policy makers to increasingly focus their attention on all those concerns related to optimally detecting, promoting and supporting territorial areas with a high tourist vocation, i.e., Local Tourism Systems. In this work, we propose to apply the biclustering data mining technique to detect Local Tourism Systems. By means of a two-dimensional clustering approach, we pursue the objective of obtaining more in-depth and granular information than conventional clustering algorithms. To this end, we formulate the objective as an optimization problem, and we solve it by means of Tabu-search. The obtained results are very promising and outperform those provided by classic clustering approaches
Biclustering sustainable local tourism systems by the Tabu search optimization algorithm / Ayadi, Wassim; Andria, Joseph; Tollo, Giacomo di; Fattoruso, Gerarda. - In: QUALITY & QUANTITY. - ISSN 0033-5177. - (2025). [10.1007/s11135-025-02105-x]
Biclustering sustainable local tourism systems by the Tabu search optimization algorithm
Tollo, Giacomo di
;
2025-01-01
Abstract
Tourism is nowadays fully acknowledged as a leading industry contributing to boost the economic development of a country. This growing recognition has led researchers and policy makers to increasingly focus their attention on all those concerns related to optimally detecting, promoting and supporting territorial areas with a high tourist vocation, i.e., Local Tourism Systems. In this work, we propose to apply the biclustering data mining technique to detect Local Tourism Systems. By means of a two-dimensional clustering approach, we pursue the objective of obtaining more in-depth and granular information than conventional clustering algorithms. To this end, we formulate the objective as an optimization problem, and we solve it by means of Tabu-search. The obtained results are very promising and outperform those provided by classic clustering approachesFile | Dimensione | Formato | |
---|---|---|---|
Wassim_Quality_Quantity.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso:
Creative commons
Dimensione
2.87 MB
Formato
Adobe PDF
|
2.87 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.