The priority during an emergency, regardless of the type, is to rescue as many lives as possible. Field hospitals are usually installed to provide the primary relief to the affected population when hospitals are compromised or absent. There are several sanitary units worldwide ready to be transported to disaster areas. An average field hospital is equipped with an operating room, laboratory, and radiological equipment, but it does not include a unit for the infectious hospital solid waste treatment, which results in improper management with high infection risks and emissions due to incorrect operations (e.g., open incineration). Therefore, the present study identified two market-available solutions (an incinerator and a sterilizer) designed to be transported even under the challenging conditions typical of disasters and are suitable for treating infectious waste. The systems were assessed by a life cycle assessment (LCA), proving an emission savings >90% (considering all impact categories) using the sterilization system. The avoided combustion allows to halve the effect on climate change due to a portable incinerator. This study supplies interesting food for thought for the emergency managers, proving the possibility of integrating the sustainability also in the planning of the response to catastrophic events.

Analyses of the Environmental Sustainability of Two Infectious Hospital Solid Waste Management Systems / Amato, Alessia; Caroli, Mario; Balducci, Susanna; Merli, Giulia; Magrini, Gianluca; Zavoli, Eleonora; Beolchini, Francesca. - In: ENVIRONMENTS. - ISSN 2076-3298. - 11:12(2024). [10.3390/environments11120284]

Analyses of the Environmental Sustainability of Two Infectious Hospital Solid Waste Management Systems

Amato, Alessia;Caroli, Mario;Balducci, Susanna;Merli, Giulia;Beolchini, Francesca
2024-01-01

Abstract

The priority during an emergency, regardless of the type, is to rescue as many lives as possible. Field hospitals are usually installed to provide the primary relief to the affected population when hospitals are compromised or absent. There are several sanitary units worldwide ready to be transported to disaster areas. An average field hospital is equipped with an operating room, laboratory, and radiological equipment, but it does not include a unit for the infectious hospital solid waste treatment, which results in improper management with high infection risks and emissions due to incorrect operations (e.g., open incineration). Therefore, the present study identified two market-available solutions (an incinerator and a sterilizer) designed to be transported even under the challenging conditions typical of disasters and are suitable for treating infectious waste. The systems were assessed by a life cycle assessment (LCA), proving an emission savings >90% (considering all impact categories) using the sterilization system. The avoided combustion allows to halve the effect on climate change due to a portable incinerator. This study supplies interesting food for thought for the emergency managers, proving the possibility of integrating the sustainability also in the planning of the response to catastrophic events.
2024
File in questo prodotto:
File Dimensione Formato  
environments-11-00284.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso: Creative commons
Dimensione 1.67 MB
Formato Adobe PDF
1.67 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/344345
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact