Mechanical ventilation with high tidal volume (TV) or positive end-expiratory pressure (PEEP) may induce lung overinflation and increased pulmonary vascular resistance to flow. In 8 healthy mechanically ventilated pigs, we evaluated whether incident dark field (IDF) vital microscopy, applied through a small thoracotomy, could be used to evaluate changes in alveolar and pulmonary microvessel dimensions under different ventilator settings. High TV (12 ml/kg) increased alveolar diameters (from 99 ± 13 to 114 ± 6 μm, p < 0.05 repeated measures one way analysis of variance) and reduced septal capillary diameters (from 12.1 ± 1.7 to 10.5 ± 1.4 μm, p < 0.001) as compared to 8 ml/kg TV. This effect was more pronounced in non-dependent lung. Alveolar and microvessel diameters did not change with high PEEP (12 cmH2O Vs. 5 cmH2O). High FiO2 (100%) led to pulmonary vasodilation (from 12.1 ± 1.7 to 14.7 ± 1.4 μm, p < 0.001), with no change in alveolar dimensions as compared to 50% FiO2. In conclusion, IDF imaging enabled to obtain high-quality images of subpleural alveoli and microvessels. High TV ventilation may induce alveolar distension with compression of septal capillaries, thus potentially increasing dead space ventilation.

Effects of different ventilatory settings on alveolar and pulmonary microvessel dimensions in pigs / Damiani, Elisa; Casarotta, Erika; Di Bella, Caterina; Galosi, Margherita; Angorini, Alessio; Serino, Federica; Tambella, Adolfo Maria; Laus, Fulvio; Zuccari, Samuele; Salvucci Salice, Alessio; Domizi, Roberta; Carsetti, Andrea; Ince, Can; Donati, Abele. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - ELETTRONICO. - 14:1(2024). [10.1038/s41598-024-82244-7]

Effects of different ventilatory settings on alveolar and pulmonary microvessel dimensions in pigs

Damiani, Elisa
;
Casarotta, Erika;Zuccari, Samuele;Salvucci Salice, Alessio;Domizi, Roberta;Carsetti, Andrea;Donati, Abele
2024-01-01

Abstract

Mechanical ventilation with high tidal volume (TV) or positive end-expiratory pressure (PEEP) may induce lung overinflation and increased pulmonary vascular resistance to flow. In 8 healthy mechanically ventilated pigs, we evaluated whether incident dark field (IDF) vital microscopy, applied through a small thoracotomy, could be used to evaluate changes in alveolar and pulmonary microvessel dimensions under different ventilator settings. High TV (12 ml/kg) increased alveolar diameters (from 99 ± 13 to 114 ± 6 μm, p < 0.05 repeated measures one way analysis of variance) and reduced septal capillary diameters (from 12.1 ± 1.7 to 10.5 ± 1.4 μm, p < 0.001) as compared to 8 ml/kg TV. This effect was more pronounced in non-dependent lung. Alveolar and microvessel diameters did not change with high PEEP (12 cmH2O Vs. 5 cmH2O). High FiO2 (100%) led to pulmonary vasodilation (from 12.1 ± 1.7 to 14.7 ± 1.4 μm, p < 0.001), with no change in alveolar dimensions as compared to 50% FiO2. In conclusion, IDF imaging enabled to obtain high-quality images of subpleural alveoli and microvessels. High TV ventilation may induce alveolar distension with compression of septal capillaries, thus potentially increasing dead space ventilation.
2024
File in questo prodotto:
File Dimensione Formato  
Scient Rep 2024.pdf

accesso aperto

Descrizione: Full Text
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso: Creative commons
Dimensione 2.07 MB
Formato Adobe PDF
2.07 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/344339
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact