The present work illustrates a novel approach for the maskless and resistless fabrication of nanopatterned metal layers on Si substrates, based on the combination of nanomechanical surface modification techniques (such as nanoindentation and nanoscratching) and electrodeposition. Single crystal (100) n-doped Si substrates were first cleaned from native oxide. Nanoindentation and nanoscratching were then used to locally change the substrate microstructure and create regions with reduced electrical conductivity. The substrates were finally mounted as cathode electrodes in a three electrode electrochemical cell to potentiostatically deposit a Ni layer. Electrodeposition was prevented in regions with modified microstructure, enabling the formation of a patterned Ni layer. The fabrication of several patterns including continuous Ni lines of 200 nm width and several microns length was obtained.

Fabrication of nanopatterned metal layers on silicon by nanoindentation/nanoscratching and electrodeposition

ROVENTI, Gabriella
2010

Abstract

The present work illustrates a novel approach for the maskless and resistless fabrication of nanopatterned metal layers on Si substrates, based on the combination of nanomechanical surface modification techniques (such as nanoindentation and nanoscratching) and electrodeposition. Single crystal (100) n-doped Si substrates were first cleaned from native oxide. Nanoindentation and nanoscratching were then used to locally change the substrate microstructure and create regions with reduced electrical conductivity. The substrates were finally mounted as cathode electrodes in a three electrode electrochemical cell to potentiostatically deposit a Ni layer. Electrodeposition was prevented in regions with modified microstructure, enabling the formation of a patterned Ni layer. The fabrication of several patterns including continuous Ni lines of 200 nm width and several microns length was obtained.
File in questo prodotto:
File Dimensione Formato  
full_text_Fabrication_of_nanopatterned_VQR_Roventi .pdf

non disponibili

Tipologia: Documento in Pre-print
Licenza: NON PUBBLICO-Accesso privato/ristretto
Dimensione 1.82 MB
Formato Adobe PDF
1.82 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/34284
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact