The work presented in this thesis addresses the topics of energy and environmental sustainability as they relate to refrigeration systems with a special focus on potable water-cooled machines. In terms of climate change mitigation, an important issue is global drive to lower greenhouse gases emissions especially CO2 and energy efficiency. The refrigeration industry is a large consumer of global energy and emissions, so it has long been an important field for technology innovation. This thesis starts with a broad perspective of the present status of refrigeration technologies especially those that use natural fluids like propane (R290) and isobutane (R600a). They are known for having low Global Warming Potential (GWP) and some of them can replace much more harmful synthetic refrigerants. But they are fraught with a variety of technical challenges, especially around safety, system design and efficiency. With a focus on three interrelated areas (i) the creation of a numerical model for a capillary tube, (ii) the assessment of a compact evaporator, and (iii) methods for lowering refrigerant charge, this thesis offers a thorough examination of the operation and environmental effects of water-cooling systems. First, the open-source program PYTHON is used to create a numerical model of a capillary tube, which is then included into a compressor's suction line to improve refrigerant superheating. Heat recovery is accomplished by wrapping the capillary tube around the suction line, raising the fluid's temperature by up to 5 degrees and increasing the Coefficient of Performance (COP) by 3–4%. According to the study, capillary tube length has a significant impact on refrigerant flow; a 300% increase in length can result in a 50–60% drop of the flow rates, thereby impacting overall system efficiency. Subsequently, the thesis investigates the performance of a compact evaporator in a domestic water-cooling device, specifically addressing the challenges posed by ice formation around the evaporator coil. Ice decreases COP and raises energy consumption by 6%, according to a dynamic model that evaluates the kinetics of heat transport. It does, however, also play a dual role in system performance by providing latent thermal storage, which allows for up to an hour of cooling when the compressor is off. Lastly, the study investigates ways to lower the water-cooling system refrigerant charge. Sensitivity evaluations on important design factors, such as condenser size and capillary tube length, are carried out using a validated thermodynamic model. Results show that condenser pipes diameter and fins width changes can reduce refrigerant charge by up to 34.7% with negligible impacts on thermal power and coefficient of performance. The study highlights how crucial it is to monitor the subcooling levels in order to preserve system performance while making these adjustments. To guarantee that machine performance stays within 5% of the planned cooling capacity, correlations are established between changes in condenser shape and capillary tube length and the reduction of refrigerant charge. The work presented in this thesis not only advances the scientific understanding of refrigeration systems but also offers practical recommendations that can guide industry practices and policymaking, ultimately contributing to the achievement of global sustainability goals.
Il lavoro presentato in questa tesi affronta i temi della sostenibilità energetica e ambientale applicati ai sistemi di refrigerazione, con particolare attenzione alle macchine per il raffreddamento dell’acqua potabile. Nell’ambito della mitigazione dei cambiamenti climatici, è fondamentale la riduzione delle emissioni di gas serra, in particolare la CO₂, e il miglioramento dell’efficienza energetica. L’industria della refrigerazione, grande consumatrice di energia e fonte rilevante di emissioni, rappresenta un settore cruciale per l’innovazione tecnologica. La tesi si apre con una panoramica delle tecnologie attuali, focalizzandosi su quelle che impiegano fluidi naturali come il propano (R290) e l’isobutano (R600a), noti per il basso Potenziale di Riscaldamento Globale (GWP). Pur essendo alternative più sostenibili rispetto ai refrigeranti sintetici, presentano sfide tecniche significative legate a sicurezza, progettazione ed efficienza. Il lavoro si concentra su tre aree: (i) sviluppo di un modello numerico per un tubo capillare, (ii) valutazione di un evaporatore compatto e (iii) metodi per la riduzione della carica di refrigerante. In primo luogo, è stato sviluppato in Python un modello numerico del tubo capillare, poi integrato nella linea di aspirazione del compressore per migliorare il surriscaldamento del refrigerante. Il recupero di calore, ottenuto avvolgendo il tubo capillare attorno alla linea di aspirazione, consente di aumentare la temperatura del fluido fino a 5 °C e migliorare il Coefficiente di Prestazione (COP) del 3–4%. Lo studio dimostra che un aumento del 300% della lunghezza del tubo può ridurre la portata del 50–60%, influenzando l’efficienza complessiva. La seconda parte analizza un evaporatore compatto in un sistema domestico di raffreddamento dell’acqua, soffermandosi sulla formazione di ghiaccio sulla serpentina. Il ghiaccio riduce il COP e aumenta il consumo energetico del 6%, secondo un modello dinamico che valuta la cinetica dello scambio termico. Tuttavia, funge anche da accumulo termico latente, garantendo fino a un’ora di raffreddamento senza compressore. Infine, la tesi esplora strategie per ridurre la carica di refrigerante. Utilizzando un modello termodinamico validato, sono state condotte analisi di sensibilità su parametri progettuali come la lunghezza del tubo capillare e la dimensione del condensatore. I risultati indicano che variazioni nel diametro dei tubi del condensatore e nella larghezza delle alette possono ridurre la carica fino al 34,7%, con impatti trascurabili su potenza termica e COP. È però fondamentale monitorare i livelli di sotto-raffreddamento per mantenere le prestazioni del sistema. Vengono inoltre proposte correlazioni tra la geometria del condensatore, la lunghezza del tubo e la carica di refrigerante, utili a garantire una capacità di raffreddamento entro il 5% di scostamento dal progetto. In conclusione, questa tesi contribuisce al progresso della conoscenza scientifica sui sistemi di refrigerazione e propone soluzioni concrete utili a orientare sia le pratiche industriali sia le politiche per la sostenibilità.
Numerical Study on Design Enhancement of Domestic Refrigeration Machines and Water Coolers / DI DONATO, Lea. - (2025 May 05).
Numerical Study on Design Enhancement of Domestic Refrigeration Machines and Water Coolers
DI DONATO, LEA
2025-05-05
Abstract
The work presented in this thesis addresses the topics of energy and environmental sustainability as they relate to refrigeration systems with a special focus on potable water-cooled machines. In terms of climate change mitigation, an important issue is global drive to lower greenhouse gases emissions especially CO2 and energy efficiency. The refrigeration industry is a large consumer of global energy and emissions, so it has long been an important field for technology innovation. This thesis starts with a broad perspective of the present status of refrigeration technologies especially those that use natural fluids like propane (R290) and isobutane (R600a). They are known for having low Global Warming Potential (GWP) and some of them can replace much more harmful synthetic refrigerants. But they are fraught with a variety of technical challenges, especially around safety, system design and efficiency. With a focus on three interrelated areas (i) the creation of a numerical model for a capillary tube, (ii) the assessment of a compact evaporator, and (iii) methods for lowering refrigerant charge, this thesis offers a thorough examination of the operation and environmental effects of water-cooling systems. First, the open-source program PYTHON is used to create a numerical model of a capillary tube, which is then included into a compressor's suction line to improve refrigerant superheating. Heat recovery is accomplished by wrapping the capillary tube around the suction line, raising the fluid's temperature by up to 5 degrees and increasing the Coefficient of Performance (COP) by 3–4%. According to the study, capillary tube length has a significant impact on refrigerant flow; a 300% increase in length can result in a 50–60% drop of the flow rates, thereby impacting overall system efficiency. Subsequently, the thesis investigates the performance of a compact evaporator in a domestic water-cooling device, specifically addressing the challenges posed by ice formation around the evaporator coil. Ice decreases COP and raises energy consumption by 6%, according to a dynamic model that evaluates the kinetics of heat transport. It does, however, also play a dual role in system performance by providing latent thermal storage, which allows for up to an hour of cooling when the compressor is off. Lastly, the study investigates ways to lower the water-cooling system refrigerant charge. Sensitivity evaluations on important design factors, such as condenser size and capillary tube length, are carried out using a validated thermodynamic model. Results show that condenser pipes diameter and fins width changes can reduce refrigerant charge by up to 34.7% with negligible impacts on thermal power and coefficient of performance. The study highlights how crucial it is to monitor the subcooling levels in order to preserve system performance while making these adjustments. To guarantee that machine performance stays within 5% of the planned cooling capacity, correlations are established between changes in condenser shape and capillary tube length and the reduction of refrigerant charge. The work presented in this thesis not only advances the scientific understanding of refrigeration systems but also offers practical recommendations that can guide industry practices and policymaking, ultimately contributing to the achievement of global sustainability goals. I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.