Soil salinity, characterized by excessive accumulation of salts, compromises crop growth, soil fertility, and ecosystem health. It arises from natural processes (primary salinization) or human activities like improper irrigation (secondary salinization). This study aimed to explore the challenges of soil salinity and salinization, focusing on i) its impacts on agriculture, ii) plant tolerance mechanisms, iii) human contributions to salinization, iv) strategies for mitigating salt accumulation to promote sustainable soil management. Salinity predominantly affects phosphorus (P) availability, with alkaline reactions immobilizing P in forms unavailable to plants. However, both parent material and land use influence P speciation through adsorption and coprecipitation, particularly under agricultural irrigation practices. In natural salt-affected ecosystems, halophytes play a vital role in promoting biological and biochemical soil processes, enhancing microbial activity, and supporting soil fertility within the rhizosphere. On the other hand, in agricultural land, management practices are integral to controlling soil salinity and maintaining fertility. Abandonment and neglect exacerbate salinization, while well-managed irrigation and salt-leaching systems sustain crop productivity. In addition, applying corrective amendments, such as composted digestate, may enhance soil recovery and resilience to salinity, though the effectiveness depends on numerous factors, including the plant-soil interaction in the rhizosphere. This research highlights the importance of integrated soil management approaches. Comprehensive understanding of pedogenic processes, nutrient dynamics, land use, and plant-soil interactions is critical for sustainable agriculture in salt-affected regions. Adaptive and locally aligned practices are essential to mitigating salinity effects, promoting soil restoration, and ensuring long-term productivity.
La salinità del suolo compromette la sua fertilità, la crescita delle colture e la salute degli ecosistemi. Essa può avere origine da processi naturali oppure da attività antropiche, come una gestione irrigua inadeguata. Questo studio si propone di analizzare le problematiche legate alla salinità del suolo, focalizzandosi su: i) gli impatti sull’agricoltura, ii) i meccanismi di tolleranza delle piante, iii) il contributo umano alla salinizzazione, iv) le strategie per mitigare l’accumulo di sali e promuovere una gestione sostenibile del suolo. La salinità incide in particolare sulla disponibilità del fosforo (P), che viene immobilizzato in forme non accessibili alle piante a causa di reazioni alcaline. Tuttavia, la speciazione del fosforo è influenzata anche dal materiale parentale e dall’uso del suolo, attraverso fenomeni di adsorbimento e coprecipitazione, specialmente in ambienti agricoli sottoposti a irrigazione. Nei sistemi naturali salini, le alofite rivestono un ruolo chiave nel sostenere i processi biologici e biochimici del suolo, stimolando l’attività microbica e migliorando la fertilità nella rizosfera. Nei contesti agricoli, invece, l’abbandono e la scarsa manutenzione intensificano i fenomeni di salinizzazione, mentre l’adozione di sistemi irrigui ben progettati, che consentano la lisciviazione dei sali, permette di preservare la resa delle colture. L’applicazione di ammendanti correttivi, come il digestato compostato, può contribuire al recupero del suolo e aumentarne la resilienza alla salinità. Tuttavia, l’efficacia di tali interventi dipende da numerosi fattori, tra cui l’interazione tra pianta e suolo nella rizosfera. Questa ricerca evidenzia l'importanza di un approccio integrato alla gestione del suolo. Una comprensione approfondita dei processi pedogenetici, della dinamica dei nutrienti, dell’uso del suolo e delle interazioni pianta-suolo è cruciale per lo sviluppo di un’agricoltura sostenibile nelle aree affette da salinità.
SALT-AFFECTED SOIL RECLAMATION BY COMPOSTED ANAEROBIC DIGESTATE / Salvucci, Andrea. - (2025).
SALT-AFFECTED SOIL RECLAMATION BY COMPOSTED ANAEROBIC DIGESTATE
SALVUCCI, ANDREA
2025-01-01
Abstract
Soil salinity, characterized by excessive accumulation of salts, compromises crop growth, soil fertility, and ecosystem health. It arises from natural processes (primary salinization) or human activities like improper irrigation (secondary salinization). This study aimed to explore the challenges of soil salinity and salinization, focusing on i) its impacts on agriculture, ii) plant tolerance mechanisms, iii) human contributions to salinization, iv) strategies for mitigating salt accumulation to promote sustainable soil management. Salinity predominantly affects phosphorus (P) availability, with alkaline reactions immobilizing P in forms unavailable to plants. However, both parent material and land use influence P speciation through adsorption and coprecipitation, particularly under agricultural irrigation practices. In natural salt-affected ecosystems, halophytes play a vital role in promoting biological and biochemical soil processes, enhancing microbial activity, and supporting soil fertility within the rhizosphere. On the other hand, in agricultural land, management practices are integral to controlling soil salinity and maintaining fertility. Abandonment and neglect exacerbate salinization, while well-managed irrigation and salt-leaching systems sustain crop productivity. In addition, applying corrective amendments, such as composted digestate, may enhance soil recovery and resilience to salinity, though the effectiveness depends on numerous factors, including the plant-soil interaction in the rhizosphere. This research highlights the importance of integrated soil management approaches. Comprehensive understanding of pedogenic processes, nutrient dynamics, land use, and plant-soil interactions is critical for sustainable agriculture in salt-affected regions. Adaptive and locally aligned practices are essential to mitigating salinity effects, promoting soil restoration, and ensuring long-term productivity.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.