We give an overview on the landscape of polynomial interpolation theory. We will describe first the geometric approach, based on the base locus analysis of linear systems of hypersurfaces of with given degree and assigned multiplicity at a set of points. Secondly, we will consider the algebraic counterpart, with a discussion on the good postulation of fat point schemes of and their regularity index. In both cases we report on some complete, or partial, results and conjectures.

Towards Good Postulation of Fat Points, One Step at a Time / Brambilla, Maria Chiara; Postinghel, Elisa. - In: BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA. - ISSN 1972-6724. - STAMPA. - (2025). [Epub ahead of print] [10.1007/s40574-025-00468-5]

Towards Good Postulation of Fat Points, One Step at a Time

Maria Chiara Brambilla;
2025-01-01

Abstract

We give an overview on the landscape of polynomial interpolation theory. We will describe first the geometric approach, based on the base locus analysis of linear systems of hypersurfaces of with given degree and assigned multiplicity at a set of points. Secondly, we will consider the algebraic counterpart, with a discussion on the good postulation of fat point schemes of and their regularity index. In both cases we report on some complete, or partial, results and conjectures.
2025
Linear systems, Fat points, Good postulation, Base locus, Segre’s bound
File in questo prodotto:
File Dimensione Formato  
Postulation1step.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso: Creative commons
Dimensione 318.5 kB
Formato Adobe PDF
318.5 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/342338
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact