We show, by variational methods, that there exists a set $A$ open and dense in ${ ain L^infty(R^N)~:~ ageq 0}$ such that if $ain A$ then the problem $ -Delta u+u=a(x)|u|^{p-1}u$, $uin H^1(R^N)$, with $p$ subcritical (or more general nonlinearities), admits infinitely many solutions.
On the existence of infinitely many solutions for a class of semilinear elliptic equations in R^N / Alessio, FRANCESCA GEMMA; P., Caldiroli; Montecchiari, Piero. - In: ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI. RENDICONTI LINCEI. MATEMATICA E APPLICAZIONI. - ISSN 1120-6330. - STAMPA. - 9:3(1998), pp. 157-165.
On the existence of infinitely many solutions for a class of semilinear elliptic equations in R^N
ALESSIO, FRANCESCA GEMMA;MONTECCHIARI, Piero
1998-01-01
Abstract
We show, by variational methods, that there exists a set $A$ open and dense in ${ ain L^infty(R^N)~:~ ageq 0}$ such that if $ain A$ then the problem $ -Delta u+u=a(x)|u|^{p-1}u$, $uin H^1(R^N)$, with $p$ subcritical (or more general nonlinearities), admits infinitely many solutions.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.