We consider a class of semilinear elliptic equations of the form $$ -\e^{2}\Delta u(x,y)+a(x)W'(u(x,y))=0,\quad (x,y)\in\R^{2} $$ where $\e>0$, $a:\R\to\R$ is a periodic, positive function and $W:\R\to\R$ is modeled on the classical two well Ginzburg-Landau potential $W(s)=(s^{2}-1)^{2}$. We look for solutions which verify the asymptotic conditions $u(x,y)\to\pm 1$ as $x\to\pm\infty$ uniformly with respect to $y\in\R$. We show via variational methods that if $\e$ is sufficiently small then the equation admits infinitely many of such solutions, distinct up to periodic translations, which are not solutions to the associated ODE problem $$ -\e^{2}\ddot q(x)+a(x)W'(q(x))=0,\qquad \lim_{x\to\pm\infty}q(x)=\pm 1. $$

Entire solutions in ℝ2 for a class of Allen-Cahn equations / Alessio, Francesca Gemma; Montecchiari, Piero. - In: ESAIM. COCV. - ISSN 1292-8119. - STAMPA. - 11:(2005), pp. 633-672. [10.1051/cocv:2005023]

Entire solutions in ℝ2 for a class of Allen-Cahn equations

ALESSIO, Francesca Gemma;MONTECCHIARI, Piero
2005-01-01

Abstract

We consider a class of semilinear elliptic equations of the form $$ -\e^{2}\Delta u(x,y)+a(x)W'(u(x,y))=0,\quad (x,y)\in\R^{2} $$ where $\e>0$, $a:\R\to\R$ is a periodic, positive function and $W:\R\to\R$ is modeled on the classical two well Ginzburg-Landau potential $W(s)=(s^{2}-1)^{2}$. We look for solutions which verify the asymptotic conditions $u(x,y)\to\pm 1$ as $x\to\pm\infty$ uniformly with respect to $y\in\R$. We show via variational methods that if $\e$ is sufficiently small then the equation admits infinitely many of such solutions, distinct up to periodic translations, which are not solutions to the associated ODE problem $$ -\e^{2}\ddot q(x)+a(x)W'(q(x))=0,\qquad \lim_{x\to\pm\infty}q(x)=\pm 1. $$
2005
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/34067
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 29
social impact