Nonalcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease worldwide and the discovery of drugs that may cover the multiple phenotypes remains a challenge. In fact, the term NAFLD, which defines the accumulation of fat in hepatocytes, includes a spectrum of conditions ranging from simple hepatic steatosis (NAFL), generally a benign condition, to the more severe non-alcoholic steatohepatitis (NASH), characterized by hepatic steatosis, lobular inflammation, and hepatocellular ballooning or other signs of hepatocyte injury, including pericellular fibrosis. Despite the heterogeneous nature of this pathology, a close association between NAFLD and metabolic syndrome has been demonstrated, which has led to a definition of Metabolic dysfunction-associated fatty liver disease (MAFLD), with new diagnostic criteria that also include elements of metabolic syndrome, such as type 2 diabetes mellitus (T2DM), insulin resistance (IR), hypertension, and dyslipidemia. Liver X receptors (LXRs), pivotal regulators of lipid metabolism and inflammation, represent attractive therapeutic targets. LXR belongs to the nuclear receptor family and, like other receptors in this group regulate the expression of target genes by binding to specific sites in DNA regions called LXR-responsive-elements (LXREs). There are two isoforms of this receptor: LXRα, which is highly expressed in the liver, kidney, intestine, adipose tissue, macrophages; and LXRβ which is expressed ubiquitously in most tissues and organs. In this project, the effects of intestinal activation of the LXRα receptor were investigated in MASH- mouse models. An established murine model with intestinal-specific LXRα activation, along with its wild-type control, was exposed to Western Diet (WD) and carbon tetrachloride (CCl4) treatment, while the control groups were subjected to normal diet and control vehicle injection. Lipid metabolism, reverse cholesterol transport (RCT), steatosis, inflammation and fibrosis were evaluated by different approaches including biochemical assays, QRT-PCR, Western blotting, and quantitative imaging. In vitro models of steatosis and fibrosis were also used to explore the role of HDL cholesterol and its receptor, scavenger receptor class B type 1 (SRB1). The results obtained showed that the intestinal activation of LXRα ameliorated several MASH features, including levels of triglycerides, RCT, steatosis, systemic and hepatic inflammatory profiles, and liver fibrosis. These effects were associated with increased high-density lipoprotein (HDL) levels and hepatic SRB1 expression. As studies carried out in vitro have shown that depletion of SRB1 inhibited the beneficial effects of HDL on steatosis and fibrogenesis in liver cells, by altering the activation of both peroxisome proliferator-activated receptors (PPAR)γ and small mothers against decapentaplegic homolog protein (SMAD)2/3 proteins. In conclusion, intestinal activation of LXRα and the subsequent induction of hepatic SRB1 exerts a protective role against inflammation, steatosis and advanced hepatic fibrosis in the MASH model. Furthermore, SRB1 was identified as a critical modulator of PPARγ and SMAD2/3 pathways, suggesting that targeting their nuclear translocation may offer novel inputs for therapy.
La malattia del fegato grasso non alcolica (NAFLD) è diventata la malattia epatica cronica più comune in tutto il mondo e la scoperta di farmaci che possono coprire i fenotipi multipli rimane una sfida. In effetti, il termine NAFLD, che definisce l'accumulo di grasso negli epatociti, comprende una gamma di condizioni che vanno dalla steatosi epatica semplice (NAFL), generalmente benigna, alla più grave steatoepatite non alcolica (NASH), caratterizzata da steatosi epatica, infiammazione lobulare e gonfiore epatocellulare o altri segni di lesione epatocitaria, compresa la fibrosi pericellulare. Nonostante la natura eterogenea di questa patologia, è stata dimostrata una stretta associazione tra NAFLD e sindrome metabolica, che ha portato a una definizione di disfunzione metabolica-associata malattia del fegato grasso (MAFLD), con nuovi criteri diagnostici che includono anche elementi di sindrome metabolica, come il diabete mellito di tipo 2 (T2DM), resistenza all'insulina (IR), ipertensione e dislipidemia. I recettori epatici X (LXRs), regolatori fondamentali del metabolismo dei lipidi e dell'infiammazione, rappresentano obiettivi terapeutici interessanti. LXR appartiene alla famiglia di recettori nucleari e, come altri recettori in questo gruppo regolano l'espressione dei geni bersaglio legandosi a siti specifici nelle regioni del DNA chiamate LXR-responsive-elements (LXREs). Esistono due isoforme di questo recettore: LXRα, che è altamente espresso nel fegato, nei reni, nell'intestino, nel tessuto adiposo e nei macrofagi; e LXRβ, che è ubiquitously espresso nella maggior parte dei tessuti e degli organi. In questo progetto, gli effetti del l'attivazione intestinale del recettore LXRα sono stati studiati nei modelli MASH-mouse. Un modello murino consolidato con attivazione intestinale specifica LXRα, insieme al suo controllo di tipo selvatico, è stato esposto alla dieta occidentale (WD) e al tetracloruro di carbonio (CCl4), mentre i gruppi di controllo sono stati sottoposti alla dieta normale e all'iniezione del veicolo di controllo. Il metabolismo dei lipidi, il trasporto inverso del colesterolo (RCT), la steatosi, l'infiammazione e la fibrosi sono stati valutati dai metodi differenti compreso i saggi biochimici, QRT-PCR, la blotting occidentale e la rappresentazione quantitativa. In vitro modelli di steatosi e fibrosi sono stati utilizzati anche per esplorare il ruolo del colesterolo HDL e il suo recettore, ricevitore scavenger classe B tipo 1 (SRB1). I risultati ottenuti hanno mostrato che l'attivazione intestinale di LXRα ha migliorato diverse caratteristiche del MASH, compresi i livelli di trigliceridi, RCT, steatosi, profili infiammatori sistemici ed epatici e fibrosi epatica. Questi effetti sono stati associati con un aumento dei livelli di lipoproteine ad alta densità (HDL) e l'espressione epatica di SRB1. Come studi in vitro hanno dimostrato che la deplezione di SRB1 inibisce gli effetti benefici dell'HDL sulla steatosi e la fibrogenesi nelle cellule del fegato, alterando l'attivazione di entrambi i perossisomi-proliferatore attivato recettori (PPAR)γ e piccole madri contro le proteine decapentaplegiche omologhe (SMAD)2/3. In conclusione, l'attivazione intestinale di LXRα e la successiva induzione di SRB1 epatica esercita un ruolo protettivo contro l'infiammazione, steatosi e fibrosi epatica avanzata nel modello MASH. Inoltre, SRB1 è stato identificato come un modulatore critico delle vie PPARγ e SMAD2/3, suggerendo che il targeting della loro traslocazione nucleare può offrire nuovi input per la terapia.
Intestinal activation of LXR counteracts metabolic associated steatohepatitis (MASH) features in mice / Lioci, Gessica. - (2025 Mar 31).
Intestinal activation of LXR counteracts metabolic associated steatohepatitis (MASH) features in mice
LIOCI, GESSICA
2025-03-31
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease worldwide and the discovery of drugs that may cover the multiple phenotypes remains a challenge. In fact, the term NAFLD, which defines the accumulation of fat in hepatocytes, includes a spectrum of conditions ranging from simple hepatic steatosis (NAFL), generally a benign condition, to the more severe non-alcoholic steatohepatitis (NASH), characterized by hepatic steatosis, lobular inflammation, and hepatocellular ballooning or other signs of hepatocyte injury, including pericellular fibrosis. Despite the heterogeneous nature of this pathology, a close association between NAFLD and metabolic syndrome has been demonstrated, which has led to a definition of Metabolic dysfunction-associated fatty liver disease (MAFLD), with new diagnostic criteria that also include elements of metabolic syndrome, such as type 2 diabetes mellitus (T2DM), insulin resistance (IR), hypertension, and dyslipidemia. Liver X receptors (LXRs), pivotal regulators of lipid metabolism and inflammation, represent attractive therapeutic targets. LXR belongs to the nuclear receptor family and, like other receptors in this group regulate the expression of target genes by binding to specific sites in DNA regions called LXR-responsive-elements (LXREs). There are two isoforms of this receptor: LXRα, which is highly expressed in the liver, kidney, intestine, adipose tissue, macrophages; and LXRβ which is expressed ubiquitously in most tissues and organs. In this project, the effects of intestinal activation of the LXRα receptor were investigated in MASH- mouse models. An established murine model with intestinal-specific LXRα activation, along with its wild-type control, was exposed to Western Diet (WD) and carbon tetrachloride (CCl4) treatment, while the control groups were subjected to normal diet and control vehicle injection. Lipid metabolism, reverse cholesterol transport (RCT), steatosis, inflammation and fibrosis were evaluated by different approaches including biochemical assays, QRT-PCR, Western blotting, and quantitative imaging. In vitro models of steatosis and fibrosis were also used to explore the role of HDL cholesterol and its receptor, scavenger receptor class B type 1 (SRB1). The results obtained showed that the intestinal activation of LXRα ameliorated several MASH features, including levels of triglycerides, RCT, steatosis, systemic and hepatic inflammatory profiles, and liver fibrosis. These effects were associated with increased high-density lipoprotein (HDL) levels and hepatic SRB1 expression. As studies carried out in vitro have shown that depletion of SRB1 inhibited the beneficial effects of HDL on steatosis and fibrogenesis in liver cells, by altering the activation of both peroxisome proliferator-activated receptors (PPAR)γ and small mothers against decapentaplegic homolog protein (SMAD)2/3 proteins. In conclusion, intestinal activation of LXRα and the subsequent induction of hepatic SRB1 exerts a protective role against inflammation, steatosis and advanced hepatic fibrosis in the MASH model. Furthermore, SRB1 was identified as a critical modulator of PPARγ and SMAD2/3 pathways, suggesting that targeting their nuclear translocation may offer novel inputs for therapy.File | Dimensione | Formato | |
---|---|---|---|
Tesi_Lioci.pdf
accesso aperto
Descrizione: Tesi_Lioci
Tipologia:
Tesi di dottorato
Licenza d'uso:
Tutti i diritti riservati
Dimensione
3.02 MB
Formato
Adobe PDF
|
3.02 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.