G-quadruplexes (G4 s) are secondary, tetraplexed DNA structures abundant in non-coding regions of the genome, implicated in gene transcription processes and currently firmly recognised as important potential therapeutic targets. Given their affinity for human proteins, G4 structures are investigated as potential decoys and aptamers. However, G4 s tend to adopt different conformations depending on the exact environmental conditions, and often only one displays the specifically desired biological activity. Their less intensively studied counterparts, the elusive tetraplexed intercalated-motifs (IMs) are typically unstable at neutral pH, hampering the investigation of their potential involvement in a biological context. We herein report on a photochemical method for “stapling” such tetraplexed-structures, to increase their stability, lock their topology and enhance their enzymatic resistance, while maintaining biological activity. The chemical structure and topology of the stapled Thrombin Binding Aptamer (TBA) was spectroscopically characterised and rationalised in silico. The method was then extended to other biologically relevant G4- and IM-prone sequences, hinting towards potential application of such stapled structures in a therapeutic context.
Locking up G-Quadruplexes with Light-Triggered Staples Leads to Increased Topological, Thermodynamic, and Metabolic Stability / Barr, Jack; Cadoni, Enrico; Schellinck, Sofie; Laudadio, Emiliano; Martins, José C; Madder, Annemieke. - In: ANGEWANDTE CHEMIE. INTERNATIONAL EDITION. - ISSN 1433-7851. - ELETTRONICO. - 64:9(2025). [10.1002/anie.202420592]
Locking up G-Quadruplexes with Light-Triggered Staples Leads to Increased Topological, Thermodynamic, and Metabolic Stability
Laudadio, Emiliano;
2025-01-01
Abstract
G-quadruplexes (G4 s) are secondary, tetraplexed DNA structures abundant in non-coding regions of the genome, implicated in gene transcription processes and currently firmly recognised as important potential therapeutic targets. Given their affinity for human proteins, G4 structures are investigated as potential decoys and aptamers. However, G4 s tend to adopt different conformations depending on the exact environmental conditions, and often only one displays the specifically desired biological activity. Their less intensively studied counterparts, the elusive tetraplexed intercalated-motifs (IMs) are typically unstable at neutral pH, hampering the investigation of their potential involvement in a biological context. We herein report on a photochemical method for “stapling” such tetraplexed-structures, to increase their stability, lock their topology and enhance their enzymatic resistance, while maintaining biological activity. The chemical structure and topology of the stapled Thrombin Binding Aptamer (TBA) was spectroscopically characterised and rationalised in silico. The method was then extended to other biologically relevant G4- and IM-prone sequences, hinting towards potential application of such stapled structures in a therapeutic context.File | Dimensione | Formato | |
---|---|---|---|
Angew Chem Int Ed - 2024 - Barr - Locking up G‐Quadruplexes with Light‐Triggered Staples Leads to Increased Topological .pdf
Solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso:
Tutti i diritti riservati
Dimensione
3.63 MB
Formato
Adobe PDF
|
3.63 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.