Climate, soil, and competition factors jointly drive tree growth variability at local and regional scale. However, the comprehensive interaction of these factors and their combined effects on tree responses within their environment remains poorly explored in current research. Using a detailed forest inventory dataset in Québec, we examined tree growth of balsam fir (Abies balsamea Mill), black spruce (Picea mariana Mill), red maple (Acer rubrum L.), sugar maple (Acer saccharum Marshall), white birch (Betula papyrifera Marshall), and yellow birch (Betula alleghaniensis Britton), as a function of competition for light and space with neighboring trees, climate and soil-related variables. Interactions between all these variables were considered in a Bayesian model predicting tree growth. The amount of light received by trees was the main variables explaining tree growth except for coniferous tree species which was influenced mostly by climate variables. Among the studied species, only red maple and white birch exhibited increased growth under warmer conditions. Intraspecific competition had strong species-specific impacts, varying from negative effects for balsam fir, to positive for red maple and yellow birch. Interactions between climate, soil, and competition played a crucial role in shaping growth patterns, especially for sugar maple, and black spruce that strongly responded to a combination of climate and competition factors. In general, tree growth also increased with the soil cation-exchange capacity (CEC), especially when higher CEC is coupled with higher temperatures and precipitation, except for black spruce. While anticipated climate conditions in Quebec, even under the most optimistic scenarios, will have a strong negative impact on the tree growth of most tree species, management can mitigate this impact by promoting tree diversity with more complex stand structures.

Interactions between climate, soil and competition drive tree growth in Quebec forests / Soubeyrand, Maxence; Marchand, Philippe; Duchesne, Louis; Bergeron, Yves; Gennaretti, Fabio. - In: FOREST ECOLOGY AND MANAGEMENT. - ISSN 0378-1127. - 555:(2024). [10.1016/j.foreco.2024.121731]

Interactions between climate, soil and competition drive tree growth in Quebec forests

Gennaretti, Fabio
2024-01-01

Abstract

Climate, soil, and competition factors jointly drive tree growth variability at local and regional scale. However, the comprehensive interaction of these factors and their combined effects on tree responses within their environment remains poorly explored in current research. Using a detailed forest inventory dataset in Québec, we examined tree growth of balsam fir (Abies balsamea Mill), black spruce (Picea mariana Mill), red maple (Acer rubrum L.), sugar maple (Acer saccharum Marshall), white birch (Betula papyrifera Marshall), and yellow birch (Betula alleghaniensis Britton), as a function of competition for light and space with neighboring trees, climate and soil-related variables. Interactions between all these variables were considered in a Bayesian model predicting tree growth. The amount of light received by trees was the main variables explaining tree growth except for coniferous tree species which was influenced mostly by climate variables. Among the studied species, only red maple and white birch exhibited increased growth under warmer conditions. Intraspecific competition had strong species-specific impacts, varying from negative effects for balsam fir, to positive for red maple and yellow birch. Interactions between climate, soil, and competition played a crucial role in shaping growth patterns, especially for sugar maple, and black spruce that strongly responded to a combination of climate and competition factors. In general, tree growth also increased with the soil cation-exchange capacity (CEC), especially when higher CEC is coupled with higher temperatures and precipitation, except for black spruce. While anticipated climate conditions in Quebec, even under the most optimistic scenarios, will have a strong negative impact on the tree growth of most tree species, management can mitigate this impact by promoting tree diversity with more complex stand structures.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/338114
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact