Heterozygous variants in the KCNQ3 gene cause epileptic and/or developmental disorders of varying severity. Here we describe the generation of induced pluripotent stem cells (iPSCs) from a 9-year-old girl with pharmacodependent neonatal-onset epilepsy and intellectual disability who carry a homozygous single-base duplication in exon 12 of KCNQ3 (NM_004519.3: KCNQ3 c.1599dup; KCNQ3 p.PHE534ILEfs*15), and from a non-carrier brother of the proband. For iPSC generation, non-integrating episomal plasmid vectors were used to transfect fibroblasts isolated from skin biopsies. The obtained iPSC lines had a normal karyotype, showed embryonic stem cell-like morphology, expressed pluripotency markers, and possessed trilineage differentiation potential.
Generation of an iPSC line (UNINAi001-A) from a girl with neonatal-onset epilepsy and non-syndromic intellectual disability carrying the homozygous KCNQ3 p.PHE534ILEfs*15 variant and of an iPSC line (UNINAi002-A) from a non-carrier, unaffected brother / Longobardi, Elena; Miceli, Francesco; Secondo, Agnese; Cicatiello, Rita; Izzo, Antonella; Tinto, Nadia; Moutton, Sebastien; Tran Mau-Them, Frédéric; Vitobello, Antonio; Taglialatela, Maurizio. - In: STEM CELL RESEARCH. - ISSN 1873-5061. - 53:(2021), p. 102311. [10.1016/j.scr.2021.102311]
Generation of an iPSC line (UNINAi001-A) from a girl with neonatal-onset epilepsy and non-syndromic intellectual disability carrying the homozygous KCNQ3 p.PHE534ILEfs*15 variant and of an iPSC line (UNINAi002-A) from a non-carrier, unaffected brother
Secondo, Agnese;
2021-01-01
Abstract
Heterozygous variants in the KCNQ3 gene cause epileptic and/or developmental disorders of varying severity. Here we describe the generation of induced pluripotent stem cells (iPSCs) from a 9-year-old girl with pharmacodependent neonatal-onset epilepsy and intellectual disability who carry a homozygous single-base duplication in exon 12 of KCNQ3 (NM_004519.3: KCNQ3 c.1599dup; KCNQ3 p.PHE534ILEfs*15), and from a non-carrier brother of the proband. For iPSC generation, non-integrating episomal plasmid vectors were used to transfect fibroblasts isolated from skin biopsies. The obtained iPSC lines had a normal karyotype, showed embryonic stem cell-like morphology, expressed pluripotency markers, and possessed trilineage differentiation potential.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.