Nitric oxide (NO) is critical for the normal physiological regulation of the nervous system and other tissues. L-Arginine, but not D-arginine, is the natural substrate for nitric oxide synthase (NOS), for it is enzymatically converted to NO and L-citrulline. However, recent evidence suggests that D-arginine can also produce NO and NO-derivatives via a different pathway. The aim of the present paper was to raise NO levels in the cells by increasing the cell permeation of its precursors. To this aim, two galactosyl prodrugs, L-arginine-D-galactos-6'-yl ester (L-ArgGal) and D-arginine-D-galactos-6'-yl ester (D-ArgGal) were synthesized. Remarkably, using the HPLC-ESI/MS technique, we found that L-ArgGal and D-ArgGal prodrugs both increased the concentration levels of L- and D-arginine and their derivatives in pituitary GH3 cells. Furthermore, we found that D-ArgGal (1) penetrated cell membranes more rapidly than its precursor D-arginine, (2) released arginine more slowly and in greater amounts than L-ArgGal, and (3) produced much higher levels of DAF-2 monitored NO and nitrite than did L-ArgGal under the same experimental conditions. In conclusion, these results indicate that an increase in the cell permeation of L- and D-arginine by L-ArgGal and D-ArgGal can lead to an increase in NO levels.

Galactosyl derivatives of L-arginine and D-arginine: synthesis, stability, cell permeation, and nitric oxide production in pituitary GH3 cells / Melisi, Daniela; Secondo, Agnese; Montoro, P; Piacente, S; Rimoli, MARIA GRAZIA; Minale, Massimiliano; DE CAPRARIIS, Paolo; Annunziato, Lucio. - In: JOURNAL OF MEDICINAL CHEMISTRY. - ISSN 0022-2623. - STAMPA. - 49:16(2006), pp. 4826-4833. [10.1021/jm060005s]

Galactosyl derivatives of L-arginine and D-arginine: synthesis, stability, cell permeation, and nitric oxide production in pituitary GH3 cells

SECONDO, AGNESE;
2006-01-01

Abstract

Nitric oxide (NO) is critical for the normal physiological regulation of the nervous system and other tissues. L-Arginine, but not D-arginine, is the natural substrate for nitric oxide synthase (NOS), for it is enzymatically converted to NO and L-citrulline. However, recent evidence suggests that D-arginine can also produce NO and NO-derivatives via a different pathway. The aim of the present paper was to raise NO levels in the cells by increasing the cell permeation of its precursors. To this aim, two galactosyl prodrugs, L-arginine-D-galactos-6'-yl ester (L-ArgGal) and D-arginine-D-galactos-6'-yl ester (D-ArgGal) were synthesized. Remarkably, using the HPLC-ESI/MS technique, we found that L-ArgGal and D-ArgGal prodrugs both increased the concentration levels of L- and D-arginine and their derivatives in pituitary GH3 cells. Furthermore, we found that D-ArgGal (1) penetrated cell membranes more rapidly than its precursor D-arginine, (2) released arginine more slowly and in greater amounts than L-ArgGal, and (3) produced much higher levels of DAF-2 monitored NO and nitrite than did L-ArgGal under the same experimental conditions. In conclusion, these results indicate that an increase in the cell permeation of L- and D-arginine by L-ArgGal and D-ArgGal can lead to an increase in NO levels.
2006
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/337760
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 14
social impact