The aim of the present Letter is to introduce a new blind deconvolution algorithm based on fixed-point optimization of a `Bussgang'-type cost function. The cost function relies on approximate Bayesian estimation achieved by an adaptive neuron. The main feature of the presented algorithm is fast convergence that guarantees good deconvolution performances with limited computational demand compared to algorithms of the same class.

Fast Fixed-Point Neural Blind Deconvolution Algorithm / Fiori, Simone. - In: IEEE TRANSACTIONS ON NEURAL NETWORKS. - ISSN 1045-9227. - 15 (2):(2004), pp. 455-459.

Fast Fixed-Point Neural Blind Deconvolution Algorithm

FIORI, Simone
2004-01-01

Abstract

The aim of the present Letter is to introduce a new blind deconvolution algorithm based on fixed-point optimization of a `Bussgang'-type cost function. The cost function relies on approximate Bayesian estimation achieved by an adaptive neuron. The main feature of the presented algorithm is fast convergence that guarantees good deconvolution performances with limited computational demand compared to algorithms of the same class.
2004
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/33738
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact