This paper proposes a new approach to study the outcomes of the research evaluation of departmental structures and to predict the results of the next research evaluation exercise. To this aim we use the information provided by the dynamics of the departmental h-index; hence, in the first part of the paper we propose two models for these dynamics: a linear and an exponential model. Moreover, we investigate its determinants, especially the influence of the structure by age of the department faculty. Afterwards, we build two new models that improve the goodness of fit for the outcomes of the research assessment: a linear model stemming from the assumption of linear dynamics for the departmental h-index, and a log-linear model consistent with the assumption of an exponential dynamics. These models are tested on data of the UK departments of four different scientific fields (Biology, Chemistry, Physics and Sociology) and the results show that this approach can be successfully applied

Prediction of UK research excellence framework assessment by the departmental h-index / Basso, Antonella; di Tollo, Giacomo. - In: EUROPEAN JOURNAL OF OPERATIONAL RESEARCH. - ISSN 0377-2217. - 296:3(2022), pp. 1036-1049. [10.1016/j.ejor.2021.05.006]

Prediction of UK research excellence framework assessment by the departmental h-index

di Tollo, Giacomo
2022-01-01

Abstract

This paper proposes a new approach to study the outcomes of the research evaluation of departmental structures and to predict the results of the next research evaluation exercise. To this aim we use the information provided by the dynamics of the departmental h-index; hence, in the first part of the paper we propose two models for these dynamics: a linear and an exponential model. Moreover, we investigate its determinants, especially the influence of the structure by age of the department faculty. Afterwards, we build two new models that improve the goodness of fit for the outcomes of the research assessment: a linear model stemming from the assumption of linear dynamics for the departmental h-index, and a log-linear model consistent with the assumption of an exponential dynamics. These models are tested on data of the UK departments of four different scientific fields (Biology, Chemistry, Physics and Sociology) and the results show that this approach can be successfully applied
2022
File in questo prodotto:
File Dimensione Formato  
5_Basso_diTollo.pdf

Solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso: Tutti i diritti riservati
Dimensione 1.22 MB
Formato Adobe PDF
1.22 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/337136
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact