This contribution aims to investigate portfolio optimization problems, that qualifies amongst the most discussed topics in the FinTech domain. In particular, we tackle the uniperiodal portfolio selection problem, that aims at finding the optimal composition of a portfolio over a given time horizon, and in this framework the portfolio should bear low turnover and transaction costs in order to be affordably rebalanced: this can be attained by constraining the number of assets in a portfolio, and the amount of wealth invested in a specific asset or asset class. In the same direction, it is also possible to set a minimum margin for loan-financed transactions of securities, as required by Regulation T in the U.S., making the problem hard to be solved by exact methods, and for which approximated algorithms seem to be a viable tool for providing a near-optimal solution. In this framework, the aim of this paper is to present a new mathematical approach in the FinTech domain, by presenting an adaptive evolutionary algorithm approach for the portfolio optimization problem that is compliant with the Regulation T. Empirical results show that our approach can be used to construct effective long-short portfolios that achieve better risk-return trade-offs compared to standard portfolios with long-only formulations.

An adaptive evolutionary strategy for long–short portfolio construction / di Tollo, Giacomo; Fattoruso, Gerarda; Filograsso, Gianni. - In: DECISIONS IN ECONOMICS AND FINANCE. - ISSN 1593-8883. - (2024). [Epub ahead of print] [10.1007/s10203-024-00468-8]

An adaptive evolutionary strategy for long–short portfolio construction

di Tollo, Giacomo;
2024-01-01

Abstract

This contribution aims to investigate portfolio optimization problems, that qualifies amongst the most discussed topics in the FinTech domain. In particular, we tackle the uniperiodal portfolio selection problem, that aims at finding the optimal composition of a portfolio over a given time horizon, and in this framework the portfolio should bear low turnover and transaction costs in order to be affordably rebalanced: this can be attained by constraining the number of assets in a portfolio, and the amount of wealth invested in a specific asset or asset class. In the same direction, it is also possible to set a minimum margin for loan-financed transactions of securities, as required by Regulation T in the U.S., making the problem hard to be solved by exact methods, and for which approximated algorithms seem to be a viable tool for providing a near-optimal solution. In this framework, the aim of this paper is to present a new mathematical approach in the FinTech domain, by presenting an adaptive evolutionary algorithm approach for the portfolio optimization problem that is compliant with the Regulation T. Empirical results show that our approach can be used to construct effective long-short portfolios that achieve better risk-return trade-offs compared to standard portfolios with long-only formulations.
2024
File in questo prodotto:
File Dimensione Formato  
Di Tollo_An-adaptive-evolutionary-strategy-long–short_2024.pdf

Solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso: Tutti i diritti riservati
Dimensione 1.53 MB
Formato Adobe PDF
1.53 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Di Tollo_An-adaptive-evolutionary-strategy-long–short_Post-print.pdf

embargo fino al 15/07/2025

Tipologia: Documento in post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza d'uso: Tutti i diritti riservati
Dimensione 1.26 MB
Formato Adobe PDF
1.26 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/337113
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact