The combination of different energy vectors like electrical energy, hydrogen, methane, and water is a crucial aspect to deal with in integrated local energy communities (ILECs). The ILEC stands for a set of active energy users that maximise benefits and minimise costs using optimisation procedures in producing and sharing energy. In particular, the proper management of different energy vectors is fundamental for achieving the best operating conditions of ILECs in terms of both energy and economic perspectives. To this end, different solutions have been developed, including advanced control and monitoring systems, distributed energy resources, and storage. Energy management planning software plays a pivotal role in developing ILECs in terms of performance evaluation and optimisation within a multi-carrier concept. In this paper, the state-of-the-art of ILECs is further enhanced by providing important details on the critical aspects related to the overall value chain for constituting an ILEC (e.g., conceptualisation, connecting technologies, barriers/limitations, control, and monitoring systems, and modelling tools for planning phases). By providing a clear understanding of the technical solutions and energy planning software, this paper can support the energy system transition towards cleaner systems by identifying the most suitable solutions and fostering the advancement of ILECs.
Energy Hub and Micro-Energy Hub Architecture in Integrated Local Energy Communities: Enabling Technologies and Energy Planning Tools / Rossi, Mose; Jin, Lingkang; Monforti Ferrario, Andrea; Di Somma, Marialaura; Buonanno, Amedeo; Papadimitriou, Christina; Morch, Andrei; Graditi, Giorgio; Comodi, Gabriele. - In: ENERGIES. - ISSN 1996-1073. - 17:19(2024). [10.3390/en17194813]
Energy Hub and Micro-Energy Hub Architecture in Integrated Local Energy Communities: Enabling Technologies and Energy Planning Tools
Rossi, Mose;Comodi, Gabriele
2024-01-01
Abstract
The combination of different energy vectors like electrical energy, hydrogen, methane, and water is a crucial aspect to deal with in integrated local energy communities (ILECs). The ILEC stands for a set of active energy users that maximise benefits and minimise costs using optimisation procedures in producing and sharing energy. In particular, the proper management of different energy vectors is fundamental for achieving the best operating conditions of ILECs in terms of both energy and economic perspectives. To this end, different solutions have been developed, including advanced control and monitoring systems, distributed energy resources, and storage. Energy management planning software plays a pivotal role in developing ILECs in terms of performance evaluation and optimisation within a multi-carrier concept. In this paper, the state-of-the-art of ILECs is further enhanced by providing important details on the critical aspects related to the overall value chain for constituting an ILEC (e.g., conceptualisation, connecting technologies, barriers/limitations, control, and monitoring systems, and modelling tools for planning phases). By providing a clear understanding of the technical solutions and energy planning software, this paper can support the energy system transition towards cleaner systems by identifying the most suitable solutions and fostering the advancement of ILECs.File | Dimensione | Formato | |
---|---|---|---|
Rossi_Energy-Hub-Micro-Energy-Hub_2024.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso:
Creative commons
Dimensione
4.78 MB
Formato
Adobe PDF
|
4.78 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.