2D layered materials with their tunable bandgap and unique crystal structures are excellent candidates for 2D optoelectronic memories. In this work, we present a simple approach for the realization of a nonvolatile optoelectronic memory device based on a MoS2 transistor with light induced charge storage capability. The MoS2 transistor shows 108 on/off current ratio and hysteresis width modulation by air pressure under normal and quiet measurement conditions. Moreover, the device shows persistent photoconductivity and exhibits excellent photo responsive memory performance with a current switching ratio of two orders of magnitude and a photocurrent that increases linearly with the incident light power. We show that a combination of gate voltage and light can be used to control the transistor current and increase the memory window by two orders of magnitude. The obtained results are a significant step toward the improvement of optoelectronic devices, showing that the combination of gate voltage and light can enable a multilevel memory device.

Optoelectronic memory in 2D MoS2 field effect transistor / Kumar, A.; Faella, E.; Durante, O.; Giubileo, F.; Pelella, A.; Viscardi, L.; Intonti, K.; Sleziona, S.; Schleberger, M.; Di Bartolomeo, A.. - In: JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS. - ISSN 0022-3697. - 179:(2023). [10.1016/j.jpcs.2023.111406]

Optoelectronic memory in 2D MoS2 field effect transistor

Kumar A.
Primo
;
2023-01-01

Abstract

2D layered materials with their tunable bandgap and unique crystal structures are excellent candidates for 2D optoelectronic memories. In this work, we present a simple approach for the realization of a nonvolatile optoelectronic memory device based on a MoS2 transistor with light induced charge storage capability. The MoS2 transistor shows 108 on/off current ratio and hysteresis width modulation by air pressure under normal and quiet measurement conditions. Moreover, the device shows persistent photoconductivity and exhibits excellent photo responsive memory performance with a current switching ratio of two orders of magnitude and a photocurrent that increases linearly with the incident light power. We show that a combination of gate voltage and light can be used to control the transistor current and increase the memory window by two orders of magnitude. The obtained results are a significant step toward the improvement of optoelectronic devices, showing that the combination of gate voltage and light can enable a multilevel memory device.
2023
2D materials; Field effect transistors; Memory; Optoelectronics; Transistors
File in questo prodotto:
File Dimensione Formato  
JPCS 2023.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso: Creative commons
Dimensione 3.17 MB
Formato Adobe PDF
3.17 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/335769
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 29
social impact