Magnetosomes are biogenic nanomaterials produced by magnetotactic bacteria, showing promise for applications such as drug delivery and environmental cleanup. This study offers a thorough characterization of magnetosomes isolated from Magnetospirillum gryphiswaldense strain MSR-1, cultivated under various conditions. Laboratory techniques including Dynamic Light Scattering (DLS), Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), Infrared Spectroscopy (IR), and X-ray Diffraction (XRD) were employed to analyze the chemical and physical properties of the samples and verify their crystal structure. Further structural investigations utilized small-angle neutron scattering (SANS) and X-ray scattering (SAXS), analyzed through two models: the Beaucage model and the novel Cluster of Chain of Iron-oxide nanoparticles with Protein rich lipid Bilayer (CCINPB) model. The Beaucage model assessed aggregation and provided data on particle cluster size and individual particle gyration radius. The CCINPB model allowed for a quantitative analysis of magnetosomes, detailing their iron oxide core, lipid membrane, and associated proteins. The study evaluated potential applications of magnetosomes in drug delivery, magnetic hyperthermia, and wastewater treatment. The structural insights gained from these techniques highlight the ability to tailor magnetosome growth conditions for optimal characteristics suited to each application. Overall, this research advances our understanding of magnetosome structure and functionality, laying groundwork for their biomedical and environmental applications.
I magnetosomi sono nanomateriali biogenici sintetizzati dai batteri magnetotattici, con potenziali applicazioni nella somministrazione di farmaci e nella bonifica ambientale. Questo studio fornisce un’approfondita caratterizzazione dei magnetosomi purificati dal ceppo batterico Magnetospirillum gryphiswaldense MSR-1 coltivato in distinte condizioni di crescita. Tecniche di laboratorio, tra cui la diffusione dinamica della luce (DLS), la microscopia a forza atomica (AFM), la microscopia elettronica a scansione (SEM), la spettroscopia infrarossa (IR) e la diffrazione dei raggi X (XRD), sono state impiegate per determinare le principali caratteristiche chimico-fisiche dei campioni e per confermare la struttura cristallina dei magnetosomi. Successivamente, sono state condotte indagini strutturali più approfondite uti- lizzando la diffusione a piccolo angolo dei neutroni (SANS) e dei raggi X (SAXS). L’analisi dei dati SANS e SAXS è stata eseguita utilizzando due diversi modelli: il modello di Beaucage e il nuovo modello Cluster of Chain of Iron-oxide nanoparticles with Protein rich lipid Bilayer (CCINPB). Il modello di Beaucage è stato utilizzato per determinare lo stato di aggregazione, fornendo informazioni sul raggio di girazione dei cluster di particelle e delle singole particelle. Il modello CCINPB ha permesso un’analisi quantitativa dei magnetosomi, compreso il loro nucleo di ossido di ferro, la membrana lipidica e le proteine ad essa associate. Le potenziali applicazioni dei magnetosomi sono state valutate in riferimento alla somministrazione di farmaci, all’ipertermia magnetica e al trattamento delle acque reflue. Le proprietà strutturali ottenute tramite le tecniche sopra menzionate dimostrano che, controllando le condizioni di crescita dei magnetosomi, è possibile ottenere campioni con le caratteristiche ottimali per ciascuna di queste applicazioni. Complessivamente, questa ricerca fornisce una comprensione completa della struttura e della funzionalità dei magnetosomi, aprendo la strada al loro utilizzo in applicazioni biomediche e ambientali.
Exploring Magnetosomes: Biophysical Insights for Tailored Biomedical and Environmental Applications / Khan, Adnan. - (2024 Oct 30).
Exploring Magnetosomes: Biophysical Insights for Tailored Biomedical and Environmental Applications
KHAN, ADNAN
2024-10-30
Abstract
Magnetosomes are biogenic nanomaterials produced by magnetotactic bacteria, showing promise for applications such as drug delivery and environmental cleanup. This study offers a thorough characterization of magnetosomes isolated from Magnetospirillum gryphiswaldense strain MSR-1, cultivated under various conditions. Laboratory techniques including Dynamic Light Scattering (DLS), Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), Infrared Spectroscopy (IR), and X-ray Diffraction (XRD) were employed to analyze the chemical and physical properties of the samples and verify their crystal structure. Further structural investigations utilized small-angle neutron scattering (SANS) and X-ray scattering (SAXS), analyzed through two models: the Beaucage model and the novel Cluster of Chain of Iron-oxide nanoparticles with Protein rich lipid Bilayer (CCINPB) model. The Beaucage model assessed aggregation and provided data on particle cluster size and individual particle gyration radius. The CCINPB model allowed for a quantitative analysis of magnetosomes, detailing their iron oxide core, lipid membrane, and associated proteins. The study evaluated potential applications of magnetosomes in drug delivery, magnetic hyperthermia, and wastewater treatment. The structural insights gained from these techniques highlight the ability to tailor magnetosome growth conditions for optimal characteristics suited to each application. Overall, this research advances our understanding of magnetosome structure and functionality, laying groundwork for their biomedical and environmental applications.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.