Abstract Sudden cardiac death (SCD), particularly among young athletes, is always a disturbing incident with a high impact on society. SCD is often related to congenital anomalies in coronary origin, which may affect how coronary arteries supply blood to the heart. There are multiple mechanisms reported in the literature postulating the underlying mechanism of SCDs during intense physical activities. Nonetheless, the exact mechanism is still not known, especially since there are some incidences showing no congenital cardiac structural abnormalities in autopsy, rejecting several of those postulations. Examining the background of the research led us to hypothesize that wave pathology in coronary arteries can trigger anomalous coronary perfusion and gets intensified with the concurrence of an anomalous coronary artery. Such pathology can occur due to aberrant interaction of waves propagating both from the proximal and distal parts of the coronary artery, which are discussed in more detail in the rest of the thesis. The present dissertation aims at investigating the hypothesized mechanism that leads to SCDs during physical exercise and find its relation between anomalous coronary functioning. To investigate this hypothesis, we collected laboratory experimental data to study and compare physiological flow fields in normal and abnormal coronary arteries under rest and exercise conditions. In pursuit of such goal, we conducted a thorough literature review to design and implement a laboratory model comprising the aortic sinuses of Valsalva, ascending aorta, and proximal parts of both left and right coronary arteries, representing the average healthy population. This model is integrated with a first-hand, tri-leaflet bioprosthetic aortic valve, ensuring realistic flow patterns within the aortic root. Additionally, we designed a laboratory model identical to the previously developed one; however, the second model implements an abnormal origin of the left coronary artery from the right sinuses of Valsalva with an intramural segment inside the aortic root wall. These models are integrated into a laboratory facility that we designed and set up from scratch, creating a novel laboratory setup capable of reproducing physiological pressure and coronary flow rate values in both the left (LCA) and right (RCA) coronary arteries under rest and exercise conditions. In short, with this in-vitro setup, we simultaneously measured pressure values at the inlet of the aorta, outlets of the aorta, left coronary artery (LCA), and right coronary artery (RCA). This is critical since we have shown that these pressure values can have magnitudes very close to each other, but their small differences govern perfusion and wave propagation in coronaries. Moreover, we sought to develop an in-silico model mimicking our in-vitro setup using Ansys® commercial software; although the in-silico model can approximately reproduce our in-vitro measurements, the model still needs to be improved to observe a complete match between in-silico and in-vitro measurements. Eventually, we could record in-vitro measurement data files in these two normal and abnormal laboratory models, followed by analyzing the data files to study and compare coronary flow dynamics under rest and exercise conditions in those two models. Our in-vitro results suggest consistent physiological pressure and flow rate values in coronary arteries of the healthy coronary artery model comparable with the corresponding measurements available in the literature. Additionally, we could elaborate on coronary artery flow dynamics highlighting different coronary perfusion mechanisms between the healthy and abnormal configurations in both rest and exercise cardiac conditions. Wave intensity analysis highlights some wave dynamics discrepancies between the normal and abnormal model, allowing us to identify the presence of the anomalous coronary artery from the wave analysis. Further, these results distinguished the anomalous wave dynamics inside the abnormal model. The observed wave dynamics pathology is the underlying mechanism to trigger coronary ischemia, particularly with the coexistence of congenital coronary artery during intense physical activities. The wave dynamics influencing the coronary perfusion comprised the wave propagation from the aorta and coronary distal resistances. Subsequently, with our in-vitro facilities, we extensively studied the influence of coronary distal resistances, which are a part of the bigger concept known as coronary perfusion autoregulation system, on the aortic pressure. The observed response of the in-vitro system to this complex phenomenon is shown to be diverse depending on the laboratory model configurations and cardiac workload. Nonetheless, we consistently observed that the mean aortic pressure is decreasing in all our in-vitro scenarios when the coronary distal resistance is reduced as a response to increase blood demand during exercise condition. Consequently, to give proper account of these important feedback mechanisms, we designed and performed a large set of laboratory experiments to investigate the response of the coronary arteries’ flow rate to the reduction of the aortic pressure. Interestingly, we have observed that both left, and right coronary arteries show faster rates of ischemia during exercise compared to the rest condition. Particularly, the anomalous LCA led to the fastest rate of coronary perfusion reduction in exercise tests among all other scenarios. These series of results supported our hypothesis that wave dynamics pathology, particularly with the presence of congenital anomalous coronary artery, is the underlying mechanism leading to SCD during intense physical activities. Last, our results support surgical operations corrections in incidences with such abnormalities. Among all surgical treatment techniques, our results support the direct correction of the anomalous origin of the abnormal coronary artery and relocating it in the correct sinuses of Valsalva to avoid the occurrence of wave dynamics pathology.
Riassunto La morte cardiaca improvvisa (MCI), in particolare tra i giovani atleti, è sempre un evento preoccupante con un forte impatto sulla società. La MCI è spesso correlata ad anomalie congenite nell'origine delle coronarie, che possono influenzare il modo in cui le arterie coronarie forniscono sangue al cuore. La letteratura riporta numerosi meccanismi postulati riguardo al processo alla base delle MCI durante attività fisiche intense. Tuttavia, il meccanismo esatto non è ancora noto, soprattutto perché in alcuni casi non vengono rilevate anomalie strutturali cardiache congenite durante l'autopsia, escludendo così diverse ipotesi. L'analisi preliminare della ricerca ci ha portato a ipotizzare che una patologia delle onde nelle arterie coronarie possa scatenare una perfusione coronarica anomala e intensificarsi in presenza di un'anomalia coronarica. Tale patologia può verificarsi a causa di un'interazione anomala delle onde che si propagano sia dalle parti prossimali che distali dell'arteria coronaria, argomento che verrà approfondito nel resto della tesi. La presente dissertazione mira a indagare il meccanismo ipotizzato che conduce alle MCI durante l'esercizio fisico e a comprendere la relazione con la disfunzione coronarica anomala. Per investigare questa ipotesi, abbiamo raccolto dati sperimentali di laboratorio per studiare e confrontare i campi di flusso fisiologico nelle arterie coronarie normali e anomale in condizioni di riposo e di esercizio. Per perseguire tale obiettivo, abbiamo condotto una revisione approfondita della letteratura per progettare e implementare un modello di laboratorio comprendente i seni aortici di Valsalva, l'aorta ascendente e le parti prossimali di entrambe le arterie coronarie sinistra e destra, rappresentando la popolazione sana media. Questo modello è integrato con una valvola aortica bioprotesica tri-leaflet di prima generazione, garantendo schemi di flusso realistici all'interno della radice aortica. Inoltre, abbiamo progettato un modello di laboratorio identico a quello precedentemente sviluppato, con la differenza che il secondo modello implementa un'origine anomala dell'arteria coronaria sinistra dai seni di Valsalva destri, con un segmento intramurale all'interno della parete della radice aortica. Questi modelli sono integrati in una struttura di laboratorio che abbiamo progettato e costruito da zero, creando un nuovo setup capace di riprodurre valori fisiologici di pressione e flusso coronarico sia nell'arteria coronaria sinistra (LCA) che in quella destra (RCA) in condizioni di riposo ed esercizio. In breve, con questo setup in-vitro, abbiamo misurato simultaneamente i valori di pressione all'ingresso dell'aorta, alle uscite dell'aorta, e nelle arterie coronarie sinistra (LCA) e destra (RCA). Questo è fondamentale poiché abbiamo dimostrato che questi valori di pressione possono avere magnitudini molto vicine tra loro, ma le loro piccole differenze governano la perfusione e la propagazione delle onde nelle coronarie. Inoltre, abbiamo sviluppato un modello in-silico che imita il nostro setup in-vitro utilizzando il software commerciale Ansys®; sebbene il modello in-silico possa approssimativamente riprodurre le nostre misurazioni in-vitro, necessita ancora di miglioramenti per osservare una completa corrispondenza tra le misurazioni in-silico e in-vitro. Alla fine, siamo riusciti a registrare i dati di misurazione in-vitro in questi due modelli di laboratorio, sia normale che anomalo, seguiti dall'analisi dei file di dati per studiare e confrontare la dinamica del flusso coronarico in condizioni di riposo ed esercizio. I nostri risultati in-vitro suggeriscono valori di pressione fisiologica e di flusso coronarico consistenti nel modello di arteria coronarica sana, comparabili con le misurazioni corrispondenti disponibili in letteratura. Inoltre, abbiamo potuto approfondire la dinamica del flusso coronarico evidenziando i diversi meccanismi di perfusione tra le configurazioni normali e anomale in condizioni cardiache sia di riposo che di esercizio. L'analisi dell'intensità delle onde evidenzia alcune discrepanze nella dinamica delle onde tra il modello normale e quello anomalo, permettendoci di identificare la presenza dell'arteria coronaria anomala dall'analisi delle onde. Inoltre, questi risultati hanno distinto la patologia delle onde anomale all'interno del modello anomalo. La patologia delle dinamiche delle onde osservata è il meccanismo sottostante che innesca l'ischemia coronarica, particolarmente in presenza di un'arteria coronaria congenita anomala durante attività fisiche intense. Le dinamiche delle onde che influenzano la perfusione coronarica comprendono la propagazione delle onde dall'aorta e le resistenze distali coronariche. Successivamente, con le nostre strutture in-vitro, abbiamo studiato estensivamente l'influenza delle resistenze distali coronariche, che fanno parte del concetto più ampio noto come sistema di autoregolazione della perfusione coronarica, sulla pressione aortica. La risposta osservata del sistema in-vitro a questo fenomeno complesso si è rivelata variegata a seconda delle configurazioni del modello di laboratorio e del carico di lavoro cardiaco. Tuttavia, abbiamo osservato costantemente che la pressione aortica media diminuisce in tutti i nostri scenari in-vitro quando la resistenza coronarica distale è ridotta come risposta all'aumento della richiesta di sangue durante l'esercizio fisico. Di conseguenza, per tenere conto di questi importanti meccanismi di feedback, abbiamo progettato e condotto un ampio set di esperimenti di laboratorio per indagare la risposta del flusso coronarico alla riduzione della pressione aortica. Curiosamente, abbiamo osservato che sia le arterie coronarie sinistra che destra mostrano tassi più rapidi di ischemia durante l'esercizio rispetto alla condizione di riposo. In particolare, l'anomala LCA ha portato al tasso più rapido di riduzione della perfusione coronarica nei test di esercizio rispetto a tutti gli altri scenari. Questi risultati hanno supportato la nostra ipotesi che la patologia delle dinamiche delle onde, soprattutto in presenza di un'arteria coronaria congenita anomala, sia il meccanismo sottostante che porta alla MCI durante attività fisiche intense. Infine, i nostri risultati supportano gli interventi chirurgici correttivi nei casi con tali anomalie. Tra tutte le tecniche di trattamento chirurgico, i nostri risultati supportano la correzione diretta dell'origine anomala dell'arteria coronaria e il suo riposizionamento nei seni corretti di Valsalva per evitare il verificarsi della patologia delle dinamiche delle onde.
Experimental and Numerical Investigations in Sport-Related Sudden Cardiac Death / Mousavi, SEYYED MAHMOUD. - (2024 Oct).
Experimental and Numerical Investigations in Sport-Related Sudden Cardiac Death
MOUSAVI, SEYYED MAHMOUD
2024-10-01
Abstract
Abstract Sudden cardiac death (SCD), particularly among young athletes, is always a disturbing incident with a high impact on society. SCD is often related to congenital anomalies in coronary origin, which may affect how coronary arteries supply blood to the heart. There are multiple mechanisms reported in the literature postulating the underlying mechanism of SCDs during intense physical activities. Nonetheless, the exact mechanism is still not known, especially since there are some incidences showing no congenital cardiac structural abnormalities in autopsy, rejecting several of those postulations. Examining the background of the research led us to hypothesize that wave pathology in coronary arteries can trigger anomalous coronary perfusion and gets intensified with the concurrence of an anomalous coronary artery. Such pathology can occur due to aberrant interaction of waves propagating both from the proximal and distal parts of the coronary artery, which are discussed in more detail in the rest of the thesis. The present dissertation aims at investigating the hypothesized mechanism that leads to SCDs during physical exercise and find its relation between anomalous coronary functioning. To investigate this hypothesis, we collected laboratory experimental data to study and compare physiological flow fields in normal and abnormal coronary arteries under rest and exercise conditions. In pursuit of such goal, we conducted a thorough literature review to design and implement a laboratory model comprising the aortic sinuses of Valsalva, ascending aorta, and proximal parts of both left and right coronary arteries, representing the average healthy population. This model is integrated with a first-hand, tri-leaflet bioprosthetic aortic valve, ensuring realistic flow patterns within the aortic root. Additionally, we designed a laboratory model identical to the previously developed one; however, the second model implements an abnormal origin of the left coronary artery from the right sinuses of Valsalva with an intramural segment inside the aortic root wall. These models are integrated into a laboratory facility that we designed and set up from scratch, creating a novel laboratory setup capable of reproducing physiological pressure and coronary flow rate values in both the left (LCA) and right (RCA) coronary arteries under rest and exercise conditions. In short, with this in-vitro setup, we simultaneously measured pressure values at the inlet of the aorta, outlets of the aorta, left coronary artery (LCA), and right coronary artery (RCA). This is critical since we have shown that these pressure values can have magnitudes very close to each other, but their small differences govern perfusion and wave propagation in coronaries. Moreover, we sought to develop an in-silico model mimicking our in-vitro setup using Ansys® commercial software; although the in-silico model can approximately reproduce our in-vitro measurements, the model still needs to be improved to observe a complete match between in-silico and in-vitro measurements. Eventually, we could record in-vitro measurement data files in these two normal and abnormal laboratory models, followed by analyzing the data files to study and compare coronary flow dynamics under rest and exercise conditions in those two models. Our in-vitro results suggest consistent physiological pressure and flow rate values in coronary arteries of the healthy coronary artery model comparable with the corresponding measurements available in the literature. Additionally, we could elaborate on coronary artery flow dynamics highlighting different coronary perfusion mechanisms between the healthy and abnormal configurations in both rest and exercise cardiac conditions. Wave intensity analysis highlights some wave dynamics discrepancies between the normal and abnormal model, allowing us to identify the presence of the anomalous coronary artery from the wave analysis. Further, these results distinguished the anomalous wave dynamics inside the abnormal model. The observed wave dynamics pathology is the underlying mechanism to trigger coronary ischemia, particularly with the coexistence of congenital coronary artery during intense physical activities. The wave dynamics influencing the coronary perfusion comprised the wave propagation from the aorta and coronary distal resistances. Subsequently, with our in-vitro facilities, we extensively studied the influence of coronary distal resistances, which are a part of the bigger concept known as coronary perfusion autoregulation system, on the aortic pressure. The observed response of the in-vitro system to this complex phenomenon is shown to be diverse depending on the laboratory model configurations and cardiac workload. Nonetheless, we consistently observed that the mean aortic pressure is decreasing in all our in-vitro scenarios when the coronary distal resistance is reduced as a response to increase blood demand during exercise condition. Consequently, to give proper account of these important feedback mechanisms, we designed and performed a large set of laboratory experiments to investigate the response of the coronary arteries’ flow rate to the reduction of the aortic pressure. Interestingly, we have observed that both left, and right coronary arteries show faster rates of ischemia during exercise compared to the rest condition. Particularly, the anomalous LCA led to the fastest rate of coronary perfusion reduction in exercise tests among all other scenarios. These series of results supported our hypothesis that wave dynamics pathology, particularly with the presence of congenital anomalous coronary artery, is the underlying mechanism leading to SCD during intense physical activities. Last, our results support surgical operations corrections in incidences with such abnormalities. Among all surgical treatment techniques, our results support the direct correction of the anomalous origin of the abnormal coronary artery and relocating it in the correct sinuses of Valsalva to avoid the occurrence of wave dynamics pathology.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.